MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsss2 Structured version   Visualization version   GIF version

Theorem fclsss2 22559
Description: A finer filter has fewer cluster points. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsss2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝐽 fClus 𝐺) ⊆ (𝐽 fClus 𝐹))

Proof of Theorem fclsss2
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1185 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐹𝐺)
2 ssralv 4030 . . . . . 6 (𝐹𝐺 → (∀𝑠𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠) → ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
31, 2syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (∀𝑠𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠) → ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
4 simpl1 1183 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐽 ∈ (TopOn‘𝑋))
5 fclstopon 22548 . . . . . . . 8 (𝑥 ∈ (𝐽 fClus 𝐺) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐺 ∈ (Fil‘𝑋)))
65adantl 482 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐺 ∈ (Fil‘𝑋)))
74, 6mpbid 233 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐺 ∈ (Fil‘𝑋))
8 isfcls2 22549 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐺) ↔ ∀𝑠𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
94, 7, 8syl2anc 584 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝑥 ∈ (𝐽 fClus 𝐺) ↔ ∀𝑠𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
10 simpl2 1184 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐹 ∈ (Fil‘𝑋))
11 isfcls2 22549 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
124, 10, 11syl2anc 584 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
133, 9, 123imtr4d 295 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝑥 ∈ (𝐽 fClus 𝐺) → 𝑥 ∈ (𝐽 fClus 𝐹)))
1413ex 413 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥 ∈ (𝐽 fClus 𝐺) → (𝑥 ∈ (𝐽 fClus 𝐺) → 𝑥 ∈ (𝐽 fClus 𝐹))))
1514pm2.43d 53 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥 ∈ (𝐽 fClus 𝐺) → 𝑥 ∈ (𝐽 fClus 𝐹)))
1615ssrdv 3970 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝐽 fClus 𝐺) ⊆ (𝐽 fClus 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079  wcel 2105  wral 3135  wss 3933  cfv 6348  (class class class)co 7145  TopOnctopon 21446  clsccl 21554  Filcfil 22381   fClus cfcls 22472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-int 4868  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-fbas 20470  df-topon 21447  df-fil 22382  df-fcls 22477
This theorem is referenced by:  fclsfnflim  22563  ufilcmp  22568  cnpfcfi  22576
  Copyright terms: Public domain W3C validator