MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsss2 Structured version   Visualization version   GIF version

Theorem fclsss2 21732
Description: A finer filter has fewer cluster points. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsss2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝐽 fClus 𝐺) ⊆ (𝐽 fClus 𝐹))

Proof of Theorem fclsss2
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1064 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐹𝐺)
2 ssralv 3650 . . . . . 6 (𝐹𝐺 → (∀𝑠𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠) → ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
31, 2syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (∀𝑠𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠) → ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
4 simpl1 1062 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐽 ∈ (TopOn‘𝑋))
5 fclstopon 21721 . . . . . . . 8 (𝑥 ∈ (𝐽 fClus 𝐺) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐺 ∈ (Fil‘𝑋)))
65adantl 482 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐺 ∈ (Fil‘𝑋)))
74, 6mpbid 222 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐺 ∈ (Fil‘𝑋))
8 isfcls2 21722 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐺) ↔ ∀𝑠𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
94, 7, 8syl2anc 692 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝑥 ∈ (𝐽 fClus 𝐺) ↔ ∀𝑠𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
10 simpl2 1063 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐹 ∈ (Fil‘𝑋))
11 isfcls2 21722 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
124, 10, 11syl2anc 692 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
133, 9, 123imtr4d 283 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝑥 ∈ (𝐽 fClus 𝐺) → 𝑥 ∈ (𝐽 fClus 𝐹)))
1413ex 450 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥 ∈ (𝐽 fClus 𝐺) → (𝑥 ∈ (𝐽 fClus 𝐺) → 𝑥 ∈ (𝐽 fClus 𝐹))))
1514pm2.43d 53 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥 ∈ (𝐽 fClus 𝐺) → 𝑥 ∈ (𝐽 fClus 𝐹)))
1615ssrdv 3594 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝐽 fClus 𝐺) ⊆ (𝐽 fClus 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wcel 1992  wral 2912  wss 3560  cfv 5850  (class class class)co 6605  TopOnctopon 20613  clsccl 20727  Filcfil 21554   fClus cfcls 21645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-int 4446  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-fbas 19657  df-topon 20618  df-fil 21555  df-fcls 21650
This theorem is referenced by:  fclsfnflim  21736  ufilcmp  21741  cnpfcfi  21749
  Copyright terms: Public domain W3C validator