Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcnre Structured version   Visualization version   GIF version

Theorem fcnre 38653
Description: A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fcnre.1 𝐾 = (topGen‘ran (,))
fcnre.3 𝑇 = 𝐽
sfcnre.5 𝐶 = (𝐽 Cn 𝐾)
fcnre.6 (𝜑𝐹𝐶)
Assertion
Ref Expression
fcnre (𝜑𝐹:𝑇⟶ℝ)

Proof of Theorem fcnre
StepHypRef Expression
1 fcnre.6 . . . . 5 (𝜑𝐹𝐶)
2 sfcnre.5 . . . . 5 𝐶 = (𝐽 Cn 𝐾)
31, 2syl6eleq 2714 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
4 cntop1 20949 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
53, 4syl 17 . . 3 (𝜑𝐽 ∈ Top)
6 fcnre.3 . . . 4 𝑇 = 𝐽
76toptopon 20643 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑇))
85, 7sylib 208 . 2 (𝜑𝐽 ∈ (TopOn‘𝑇))
9 fcnre.1 . . . 4 𝐾 = (topGen‘ran (,))
10 retopon 22472 . . . 4 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
119, 10eqeltri 2700 . . 3 𝐾 ∈ (TopOn‘ℝ)
1211a1i 11 . 2 (𝜑𝐾 ∈ (TopOn‘ℝ))
13 cnf2 20958 . 2 ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑇⟶ℝ)
148, 12, 3, 13syl3anc 1323 1 (𝜑𝐹:𝑇⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1992   cuni 4407  ran crn 5080  wf 5846  cfv 5850  (class class class)co 6605  cr 9880  (,)cioo 12114  topGenctg 16014  Topctop 20612  TopOnctopon 20613   Cn ccn 20933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-pre-lttri 9955  ax-pre-lttrn 9956
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-1st 7116  df-2nd 7117  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-ioo 12118  df-topgen 16020  df-top 20616  df-bases 20617  df-topon 20618  df-cn 20936
This theorem is referenced by:  rfcnpre2  38659  cncmpmax  38660  rfcnpre3  38661  rfcnpre4  38662  rfcnnnub  38664  stoweidlem28  39539  stoweidlem29  39540  stoweidlem36  39547  stoweidlem43  39554  stoweidlem44  39555  stoweidlem47  39558  stoweidlem52  39563  stoweidlem57  39568  stoweidlem59  39570  stoweidlem60  39571  stoweidlem61  39572  stoweidlem62  39573  stoweid  39574
  Copyright terms: Public domain W3C validator