Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcobij Structured version   Visualization version   GIF version

Theorem fcobij 30450
Description: Composing functions with a bijection yields a bijection between sets of functions. (Contributed by Thierry Arnoux, 25-Aug-2017.)
Hypotheses
Ref Expression
fcobij.1 (𝜑𝐺:𝑆1-1-onto𝑇)
fcobij.2 (𝜑𝑅𝑈)
fcobij.3 (𝜑𝑆𝑉)
fcobij.4 (𝜑𝑇𝑊)
Assertion
Ref Expression
fcobij (𝜑 → (𝑓 ∈ (𝑆m 𝑅) ↦ (𝐺𝑓)):(𝑆m 𝑅)–1-1-onto→(𝑇m 𝑅))
Distinct variable groups:   𝑓,𝐺   𝑅,𝑓   𝑆,𝑓   𝑇,𝑓   𝜑,𝑓
Allowed substitution hints:   𝑈(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem fcobij
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqid 2819 . 2 (𝑓 ∈ (𝑆m 𝑅) ↦ (𝐺𝑓)) = (𝑓 ∈ (𝑆m 𝑅) ↦ (𝐺𝑓))
2 fcobij.1 . . . . . 6 (𝜑𝐺:𝑆1-1-onto𝑇)
3 f1of 6608 . . . . . 6 (𝐺:𝑆1-1-onto𝑇𝐺:𝑆𝑇)
42, 3syl 17 . . . . 5 (𝜑𝐺:𝑆𝑇)
54adantr 483 . . . 4 ((𝜑𝑓 ∈ (𝑆m 𝑅)) → 𝐺:𝑆𝑇)
6 fcobij.3 . . . . . 6 (𝜑𝑆𝑉)
7 fcobij.2 . . . . . 6 (𝜑𝑅𝑈)
86, 7elmapd 8412 . . . . 5 (𝜑 → (𝑓 ∈ (𝑆m 𝑅) ↔ 𝑓:𝑅𝑆))
98biimpa 479 . . . 4 ((𝜑𝑓 ∈ (𝑆m 𝑅)) → 𝑓:𝑅𝑆)
10 fco 6524 . . . 4 ((𝐺:𝑆𝑇𝑓:𝑅𝑆) → (𝐺𝑓):𝑅𝑇)
115, 9, 10syl2anc 586 . . 3 ((𝜑𝑓 ∈ (𝑆m 𝑅)) → (𝐺𝑓):𝑅𝑇)
12 fcobij.4 . . . . 5 (𝜑𝑇𝑊)
1312, 7elmapd 8412 . . . 4 (𝜑 → ((𝐺𝑓) ∈ (𝑇m 𝑅) ↔ (𝐺𝑓):𝑅𝑇))
1413adantr 483 . . 3 ((𝜑𝑓 ∈ (𝑆m 𝑅)) → ((𝐺𝑓) ∈ (𝑇m 𝑅) ↔ (𝐺𝑓):𝑅𝑇))
1511, 14mpbird 259 . 2 ((𝜑𝑓 ∈ (𝑆m 𝑅)) → (𝐺𝑓) ∈ (𝑇m 𝑅))
16 f1ocnv 6620 . . . . . 6 (𝐺:𝑆1-1-onto𝑇𝐺:𝑇1-1-onto𝑆)
17 f1of 6608 . . . . . 6 (𝐺:𝑇1-1-onto𝑆𝐺:𝑇𝑆)
182, 16, 173syl 18 . . . . 5 (𝜑𝐺:𝑇𝑆)
1918adantr 483 . . . 4 ((𝜑 ∈ (𝑇m 𝑅)) → 𝐺:𝑇𝑆)
2012, 7elmapd 8412 . . . . 5 (𝜑 → ( ∈ (𝑇m 𝑅) ↔ :𝑅𝑇))
2120biimpa 479 . . . 4 ((𝜑 ∈ (𝑇m 𝑅)) → :𝑅𝑇)
22 fco 6524 . . . 4 ((𝐺:𝑇𝑆:𝑅𝑇) → (𝐺):𝑅𝑆)
2319, 21, 22syl2anc 586 . . 3 ((𝜑 ∈ (𝑇m 𝑅)) → (𝐺):𝑅𝑆)
246, 7elmapd 8412 . . . 4 (𝜑 → ((𝐺) ∈ (𝑆m 𝑅) ↔ (𝐺):𝑅𝑆))
2524adantr 483 . . 3 ((𝜑 ∈ (𝑇m 𝑅)) → ((𝐺) ∈ (𝑆m 𝑅) ↔ (𝐺):𝑅𝑆))
2623, 25mpbird 259 . 2 ((𝜑 ∈ (𝑇m 𝑅)) → (𝐺) ∈ (𝑆m 𝑅))
27 simpr 487 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → 𝑓 = (𝐺))
2827coeq2d 5726 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → (𝐺𝑓) = (𝐺 ∘ (𝐺)))
29 coass 6111 . . . . 5 ((𝐺𝐺) ∘ ) = (𝐺 ∘ (𝐺))
3028, 29syl6eqr 2872 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → (𝐺𝑓) = ((𝐺𝐺) ∘ ))
31 simpll 765 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → 𝜑)
32 f1ococnv2 6634 . . . . . 6 (𝐺:𝑆1-1-onto𝑇 → (𝐺𝐺) = ( I ↾ 𝑇))
3331, 2, 323syl 18 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → (𝐺𝐺) = ( I ↾ 𝑇))
3433coeq1d 5725 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → ((𝐺𝐺) ∘ ) = (( I ↾ 𝑇) ∘ ))
35 simplrr 776 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → ∈ (𝑇m 𝑅))
3631, 35, 21syl2anc 586 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → :𝑅𝑇)
37 fcoi2 6546 . . . . 5 (:𝑅𝑇 → (( I ↾ 𝑇) ∘ ) = )
3836, 37syl 17 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → (( I ↾ 𝑇) ∘ ) = )
3930, 34, 383eqtrrd 2859 . . 3 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ 𝑓 = (𝐺)) → = (𝐺𝑓))
40 simpr 487 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → = (𝐺𝑓))
4140coeq2d 5726 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → (𝐺) = (𝐺 ∘ (𝐺𝑓)))
42 coass 6111 . . . . 5 ((𝐺𝐺) ∘ 𝑓) = (𝐺 ∘ (𝐺𝑓))
4341, 42syl6eqr 2872 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → (𝐺) = ((𝐺𝐺) ∘ 𝑓))
44 simpll 765 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → 𝜑)
45 f1ococnv1 6636 . . . . . 6 (𝐺:𝑆1-1-onto𝑇 → (𝐺𝐺) = ( I ↾ 𝑆))
4644, 2, 453syl 18 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → (𝐺𝐺) = ( I ↾ 𝑆))
4746coeq1d 5725 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → ((𝐺𝐺) ∘ 𝑓) = (( I ↾ 𝑆) ∘ 𝑓))
48 simplrl 775 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → 𝑓 ∈ (𝑆m 𝑅))
4944, 48, 9syl2anc 586 . . . . 5 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → 𝑓:𝑅𝑆)
50 fcoi2 6546 . . . . 5 (𝑓:𝑅𝑆 → (( I ↾ 𝑆) ∘ 𝑓) = 𝑓)
5149, 50syl 17 . . . 4 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → (( I ↾ 𝑆) ∘ 𝑓) = 𝑓)
5243, 47, 513eqtrrd 2859 . . 3 (((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) ∧ = (𝐺𝑓)) → 𝑓 = (𝐺))
5339, 52impbida 799 . 2 ((𝜑 ∧ (𝑓 ∈ (𝑆m 𝑅) ∧ ∈ (𝑇m 𝑅))) → (𝑓 = (𝐺) ↔ = (𝐺𝑓)))
541, 15, 26, 53f1o2d 7391 1 (𝜑 → (𝑓 ∈ (𝑆m 𝑅) ↦ (𝐺𝑓)):(𝑆m 𝑅)–1-1-onto→(𝑇m 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  cmpt 5137   I cid 5452  ccnv 5547  cres 5550  ccom 5552  wf 6344  1-1-ontowf1o 6347  (class class class)co 7148  m cmap 8398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-map 8400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator