MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst5 Structured version   Visualization version   GIF version

Theorem fconst5 6636
Description: Two ways to express that a function is constant. (Contributed by NM, 27-Nov-2007.)
Assertion
Ref Expression
fconst5 ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵}))

Proof of Theorem fconst5
StepHypRef Expression
1 rneq 5506 . . . 4 (𝐹 = (𝐴 × {𝐵}) → ran 𝐹 = ran (𝐴 × {𝐵}))
2 rnxp 5722 . . . . 5 (𝐴 ≠ ∅ → ran (𝐴 × {𝐵}) = {𝐵})
32eqeq2d 2770 . . . 4 (𝐴 ≠ ∅ → (ran 𝐹 = ran (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵}))
41, 3syl5ib 234 . . 3 (𝐴 ≠ ∅ → (𝐹 = (𝐴 × {𝐵}) → ran 𝐹 = {𝐵}))
54adantl 473 . 2 ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) → ran 𝐹 = {𝐵}))
6 df-fo 6055 . . . . . . 7 (𝐹:𝐴onto→{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}))
7 fof 6277 . . . . . . 7 (𝐹:𝐴onto→{𝐵} → 𝐹:𝐴⟶{𝐵})
86, 7sylbir 225 . . . . . 6 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹:𝐴⟶{𝐵})
9 fconst2g 6633 . . . . . 6 (𝐵 ∈ V → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
108, 9syl5ib 234 . . . . 5 (𝐵 ∈ V → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = {𝐵}) → 𝐹 = (𝐴 × {𝐵})))
1110expd 451 . . . 4 (𝐵 ∈ V → (𝐹 Fn 𝐴 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
1211adantrd 485 . . 3 (𝐵 ∈ V → ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
13 fnrel 6150 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
14 snprc 4397 . . . . . 6 𝐵 ∈ V ↔ {𝐵} = ∅)
15 relrn0 5538 . . . . . . . . . 10 (Rel 𝐹 → (𝐹 = ∅ ↔ ran 𝐹 = ∅))
1615biimprd 238 . . . . . . . . 9 (Rel 𝐹 → (ran 𝐹 = ∅ → 𝐹 = ∅))
1716adantl 473 . . . . . . . 8 (({𝐵} = ∅ ∧ Rel 𝐹) → (ran 𝐹 = ∅ → 𝐹 = ∅))
18 eqeq2 2771 . . . . . . . . 9 ({𝐵} = ∅ → (ran 𝐹 = {𝐵} ↔ ran 𝐹 = ∅))
1918adantr 472 . . . . . . . 8 (({𝐵} = ∅ ∧ Rel 𝐹) → (ran 𝐹 = {𝐵} ↔ ran 𝐹 = ∅))
20 xpeq2 5286 . . . . . . . . . . 11 ({𝐵} = ∅ → (𝐴 × {𝐵}) = (𝐴 × ∅))
21 xp0 5710 . . . . . . . . . . 11 (𝐴 × ∅) = ∅
2220, 21syl6eq 2810 . . . . . . . . . 10 ({𝐵} = ∅ → (𝐴 × {𝐵}) = ∅)
2322eqeq2d 2770 . . . . . . . . 9 ({𝐵} = ∅ → (𝐹 = (𝐴 × {𝐵}) ↔ 𝐹 = ∅))
2423adantr 472 . . . . . . . 8 (({𝐵} = ∅ ∧ Rel 𝐹) → (𝐹 = (𝐴 × {𝐵}) ↔ 𝐹 = ∅))
2517, 19, 243imtr4d 283 . . . . . . 7 (({𝐵} = ∅ ∧ Rel 𝐹) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))
2625ex 449 . . . . . 6 ({𝐵} = ∅ → (Rel 𝐹 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
2714, 26sylbi 207 . . . . 5 𝐵 ∈ V → (Rel 𝐹 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
2813, 27syl5 34 . . . 4 𝐵 ∈ V → (𝐹 Fn 𝐴 → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
2928adantrd 485 . . 3 𝐵 ∈ V → ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵}))))
3012, 29pm2.61i 176 . 2 ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (ran 𝐹 = {𝐵} → 𝐹 = (𝐴 × {𝐵})))
315, 30impbid 202 1 ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  Vcvv 3340  c0 4058  {csn 4321   × cxp 5264  ran crn 5267  Rel wrel 5271   Fn wfn 6044  wf 6045  ontowfo 6047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fo 6055  df-fv 6057
This theorem is referenced by:  nvo00  27946  esumnul  30440  esum0  30441  volsupnfl  33785  rnmptc  39870
  Copyright terms: Public domain W3C validator