MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fctop2 Structured version   Visualization version   GIF version

Theorem fctop2 20719
Description: The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (This version of fctop 20718 requires the Axiom of Infinity.) (Contributed by FL, 20-Aug-2006.)
Assertion
Ref Expression
fctop2 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≺ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem fctop2
StepHypRef Expression
1 isfinite 8493 . . . . 5 ((𝐴𝑥) ∈ Fin ↔ (𝐴𝑥) ≺ ω)
21orbi1i 542 . . . 4 (((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴𝑥) ≺ ω ∨ 𝑥 = ∅))
32a1i 11 . . 3 (𝑥 ∈ 𝒫 𝐴 → (((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴𝑥) ≺ ω ∨ 𝑥 = ∅)))
43rabbiia 3173 . 2 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} = {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≺ ω ∨ 𝑥 = ∅)}
5 fctop 20718 . 2 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
64, 5syl5eqelr 2703 1 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ≺ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383   = wceq 1480  wcel 1987  {crab 2911  cdif 3552  c0 3891  𝒫 cpw 4130   class class class wbr 4613  cfv 5847  ωcom 7012  csdm 7898  Fincfn 7899  TopOnctopon 20618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-top 20621  df-topon 20623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator