MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  festino Structured version   Visualization version   GIF version

Theorem festino 2558
Description: "Festino", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and some 𝜒 is 𝜓, therefore some 𝜒 is not 𝜑. (In Aristotelian notation, EIO-2: PeM and SiM therefore SoP.) (Contributed by David A. Wheeler, 25-Nov-2016.)
Hypotheses
Ref Expression
festino.maj 𝑥(𝜑 → ¬ 𝜓)
festino.min 𝑥(𝜒𝜓)
Assertion
Ref Expression
festino 𝑥(𝜒 ∧ ¬ 𝜑)

Proof of Theorem festino
StepHypRef Expression
1 festino.min . 2 𝑥(𝜒𝜓)
2 festino.maj . . . . 5 𝑥(𝜑 → ¬ 𝜓)
32spi 2040 . . . 4 (𝜑 → ¬ 𝜓)
43con2i 132 . . 3 (𝜓 → ¬ 𝜑)
54anim2i 590 . 2 ((𝜒𝜓) → (𝜒 ∧ ¬ 𝜑))
61, 5eximii 1753 1 𝑥(𝜒 ∧ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  wal 1472  wex 1694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-12 2032
This theorem depends on definitions:  df-bi 195  df-an 384  df-ex 1695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator