MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffoss Structured version   Visualization version   GIF version

Theorem ffoss 7649
Description: Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.)
Hypothesis
Ref Expression
f11o.1 𝐹 ∈ V
Assertion
Ref Expression
ffoss (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ffoss
StepHypRef Expression
1 df-f 6361 . . . 4 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 dffn4 6598 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
32anbi1i 625 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ (𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵))
41, 3bitri 277 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵))
5 f11o.1 . . . . 5 𝐹 ∈ V
65rnex 7619 . . . 4 ran 𝐹 ∈ V
7 foeq3 6590 . . . . 5 (𝑥 = ran 𝐹 → (𝐹:𝐴onto𝑥𝐹:𝐴onto→ran 𝐹))
8 sseq1 3994 . . . . 5 (𝑥 = ran 𝐹 → (𝑥𝐵 ↔ ran 𝐹𝐵))
97, 8anbi12d 632 . . . 4 (𝑥 = ran 𝐹 → ((𝐹:𝐴onto𝑥𝑥𝐵) ↔ (𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵)))
106, 9spcev 3609 . . 3 ((𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵) → ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
114, 10sylbi 219 . 2 (𝐹:𝐴𝐵 → ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
12 fof 6592 . . . 4 (𝐹:𝐴onto𝑥𝐹:𝐴𝑥)
13 fss 6529 . . . 4 ((𝐹:𝐴𝑥𝑥𝐵) → 𝐹:𝐴𝐵)
1412, 13sylan 582 . . 3 ((𝐹:𝐴onto𝑥𝑥𝐵) → 𝐹:𝐴𝐵)
1514exlimiv 1931 . 2 (∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵) → 𝐹:𝐴𝐵)
1611, 15impbii 211 1 (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  Vcvv 3496  wss 3938  ran crn 5558   Fn wfn 6352  wf 6353  ontowfo 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-cnv 5565  df-dm 5567  df-rn 5568  df-f 6361  df-fo 6363
This theorem is referenced by:  f11o  7650
  Copyright terms: Public domain W3C validator