MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffoss Structured version   Visualization version   GIF version

Theorem ffoss 7124
Description: Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.)
Hypothesis
Ref Expression
f11o.1 𝐹 ∈ V
Assertion
Ref Expression
ffoss (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ffoss
StepHypRef Expression
1 df-f 5890 . . . 4 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
2 dffn4 6119 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
32anbi1i 731 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ (𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵))
41, 3bitri 264 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵))
5 f11o.1 . . . . 5 𝐹 ∈ V
65rnex 7097 . . . 4 ran 𝐹 ∈ V
7 foeq3 6111 . . . . 5 (𝑥 = ran 𝐹 → (𝐹:𝐴onto𝑥𝐹:𝐴onto→ran 𝐹))
8 sseq1 3624 . . . . 5 (𝑥 = ran 𝐹 → (𝑥𝐵 ↔ ran 𝐹𝐵))
97, 8anbi12d 747 . . . 4 (𝑥 = ran 𝐹 → ((𝐹:𝐴onto𝑥𝑥𝐵) ↔ (𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵)))
106, 9spcev 3298 . . 3 ((𝐹:𝐴onto→ran 𝐹 ∧ ran 𝐹𝐵) → ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
114, 10sylbi 207 . 2 (𝐹:𝐴𝐵 → ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
12 fof 6113 . . . 4 (𝐹:𝐴onto𝑥𝐹:𝐴𝑥)
13 fss 6054 . . . 4 ((𝐹:𝐴𝑥𝑥𝐵) → 𝐹:𝐴𝐵)
1412, 13sylan 488 . . 3 ((𝐹:𝐴onto𝑥𝑥𝐵) → 𝐹:𝐴𝐵)
1514exlimiv 1857 . 2 (∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵) → 𝐹:𝐴𝐵)
1611, 15impbii 199 1 (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1482  wex 1703  wcel 1989  Vcvv 3198  wss 3572  ran crn 5113   Fn wfn 5881  wf 5882  ontowfo 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-rex 2917  df-rab 2920  df-v 3200  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-cnv 5120  df-dm 5122  df-rn 5123  df-f 5890  df-fo 5892
This theorem is referenced by:  f11o  7125
  Copyright terms: Public domain W3C validator