Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fge0npnf Structured version   Visualization version   GIF version

Theorem fge0npnf 42526
Description: If 𝐹 maps to nonnegative reals, then +∞ is not in its range. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
fge0npnf.1 (𝜑𝐹:𝑋⟶(0[,)+∞))
Assertion
Ref Expression
fge0npnf (𝜑 → ¬ +∞ ∈ ran 𝐹)

Proof of Theorem fge0npnf
StepHypRef Expression
1 fge0npnf.1 . . . . 5 (𝜑𝐹:𝑋⟶(0[,)+∞))
21frnd 6514 . . . 4 (𝜑 → ran 𝐹 ⊆ (0[,)+∞))
32adantr 481 . . 3 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ran 𝐹 ⊆ (0[,)+∞))
4 simpr 485 . . 3 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
53, 4sseldd 3965 . 2 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ (0[,)+∞))
6 0xr 10676 . . . 4 0 ∈ ℝ*
7 icoub 41678 . . . 4 (0 ∈ ℝ* → ¬ +∞ ∈ (0[,)+∞))
86, 7ax-mp 5 . . 3 ¬ +∞ ∈ (0[,)+∞)
98a1i 11 . 2 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ (0[,)+∞))
105, 9pm2.65da 813 1 (𝜑 → ¬ +∞ ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2105  wss 3933  ran crn 5549  wf 6344  (class class class)co 7145  0cc0 10525  +∞cpnf 10660  *cxr 10662  [,)cico 12728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-addrcl 10586  ax-rnegex 10596  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-ico 12732
This theorem is referenced by:  sge0reval  42531  sge0fsum  42546
  Copyright terms: Public domain W3C validator