Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgreu Structured version   Visualization version   GIF version

Theorem fgreu 30345
Description: Exactly one point of a function's graph has a given first element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
fgreu ((Fun 𝐹𝑋 ∈ dom 𝐹) → ∃!𝑝𝐹 𝑋 = (1st𝑝))
Distinct variable groups:   𝐹,𝑝   𝑋,𝑝

Proof of Theorem fgreu
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 funfvop 6812 . . 3 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹)
2 simplll 771 . . . . . . . 8 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → Fun 𝐹)
3 funrel 6365 . . . . . . . 8 (Fun 𝐹 → Rel 𝐹)
42, 3syl 17 . . . . . . 7 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → Rel 𝐹)
5 simplr 765 . . . . . . 7 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑝𝐹)
6 1st2nd 7727 . . . . . . 7 ((Rel 𝐹𝑝𝐹) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
74, 5, 6syl2anc 584 . . . . . 6 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
8 simpr 485 . . . . . . 7 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑋 = (1st𝑝))
9 simpllr 772 . . . . . . . 8 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑋 ∈ dom 𝐹)
108opeq1d 4801 . . . . . . . . . 10 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → ⟨𝑋, (2nd𝑝)⟩ = ⟨(1st𝑝), (2nd𝑝)⟩)
117, 10eqtr4d 2856 . . . . . . . . 9 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑝 = ⟨𝑋, (2nd𝑝)⟩)
1211, 5eqeltrrd 2911 . . . . . . . 8 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → ⟨𝑋, (2nd𝑝)⟩ ∈ 𝐹)
13 funopfvb 6714 . . . . . . . . 9 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹𝑋) = (2nd𝑝) ↔ ⟨𝑋, (2nd𝑝)⟩ ∈ 𝐹))
1413biimpar 478 . . . . . . . 8 (((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ ⟨𝑋, (2nd𝑝)⟩ ∈ 𝐹) → (𝐹𝑋) = (2nd𝑝))
152, 9, 12, 14syl21anc 833 . . . . . . 7 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → (𝐹𝑋) = (2nd𝑝))
168, 15opeq12d 4803 . . . . . 6 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → ⟨𝑋, (𝐹𝑋)⟩ = ⟨(1st𝑝), (2nd𝑝)⟩)
177, 16eqtr4d 2856 . . . . 5 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑝 = ⟨𝑋, (𝐹𝑋)⟩)
18 simpr 485 . . . . . . 7 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩) → 𝑝 = ⟨𝑋, (𝐹𝑋)⟩)
1918fveq2d 6667 . . . . . 6 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩) → (1st𝑝) = (1st ‘⟨𝑋, (𝐹𝑋)⟩))
20 fvex 6676 . . . . . . . 8 (𝐹𝑋) ∈ V
21 op1stg 7690 . . . . . . . 8 ((𝑋 ∈ dom 𝐹 ∧ (𝐹𝑋) ∈ V) → (1st ‘⟨𝑋, (𝐹𝑋)⟩) = 𝑋)
2220, 21mpan2 687 . . . . . . 7 (𝑋 ∈ dom 𝐹 → (1st ‘⟨𝑋, (𝐹𝑋)⟩) = 𝑋)
2322ad3antlr 727 . . . . . 6 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩) → (1st ‘⟨𝑋, (𝐹𝑋)⟩) = 𝑋)
2419, 23eqtr2d 2854 . . . . 5 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩) → 𝑋 = (1st𝑝))
2517, 24impbida 797 . . . 4 (((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) → (𝑋 = (1st𝑝) ↔ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩))
2625ralrimiva 3179 . . 3 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ∀𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩))
27 eqeq2 2830 . . . . . 6 (𝑞 = ⟨𝑋, (𝐹𝑋)⟩ → (𝑝 = 𝑞𝑝 = ⟨𝑋, (𝐹𝑋)⟩))
2827bibi2d 344 . . . . 5 (𝑞 = ⟨𝑋, (𝐹𝑋)⟩ → ((𝑋 = (1st𝑝) ↔ 𝑝 = 𝑞) ↔ (𝑋 = (1st𝑝) ↔ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩)))
2928ralbidv 3194 . . . 4 (𝑞 = ⟨𝑋, (𝐹𝑋)⟩ → (∀𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = 𝑞) ↔ ∀𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩)))
3029rspcev 3620 . . 3 ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹 ∧ ∀𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩)) → ∃𝑞𝐹𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = 𝑞))
311, 26, 30syl2anc 584 . 2 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ∃𝑞𝐹𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = 𝑞))
32 reu6 3714 . 2 (∃!𝑝𝐹 𝑋 = (1st𝑝) ↔ ∃𝑞𝐹𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = 𝑞))
3331, 32sylibr 235 1 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ∃!𝑝𝐹 𝑋 = (1st𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  ∃!wreu 3137  Vcvv 3492  cop 4563  dom cdm 5548  Rel wrel 5553  Fun wfun 6342  cfv 6348  1st c1st 7676  2nd c2nd 7677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-fv 6356  df-1st 7678  df-2nd 7679
This theorem is referenced by:  fcnvgreu  30346
  Copyright terms: Public domain W3C validator