Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fib0 Structured version   Visualization version   GIF version

Theorem fib0 29590
Description: Value of the Fibonacci sequence at index 0. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Assertion
Ref Expression
fib0 (Fibci‘0) = 0

Proof of Theorem fib0
StepHypRef Expression
1 df-fib 29588 . . 3 Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))))
21fveq1i 6085 . 2 (Fibci‘0) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))))‘0)
3 nn0ex 11141 . . . . 5 0 ∈ V
43a1i 11 . . . 4 (⊤ → ℕ0 ∈ V)
5 0nn0 11150 . . . . . 6 0 ∈ ℕ0
65a1i 11 . . . . 5 (⊤ → 0 ∈ ℕ0)
7 1nn0 11151 . . . . . 6 1 ∈ ℕ0
87a1i 11 . . . . 5 (⊤ → 1 ∈ ℕ0)
96, 8s2cld 13408 . . . 4 (⊤ → ⟨“01”⟩ ∈ Word ℕ0)
10 eqid 2605 . . . 4 (Word ℕ0 ∩ (# “ (ℤ‘(#‘⟨“01”⟩)))) = (Word ℕ0 ∩ (# “ (ℤ‘(#‘⟨“01”⟩))))
11 fiblem 29589 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))):(Word ℕ0 ∩ (# “ (ℤ‘(#‘⟨“01”⟩))))⟶ℕ0
1211a1i 11 . . . 4 (⊤ → (𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))):(Word ℕ0 ∩ (# “ (ℤ‘(#‘⟨“01”⟩))))⟶ℕ0)
13 2nn 11028 . . . . . . 7 2 ∈ ℕ
14 lbfzo0 12326 . . . . . . 7 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
1513, 14mpbir 219 . . . . . 6 0 ∈ (0..^2)
16 s2len 13426 . . . . . . 7 (#‘⟨“01”⟩) = 2
1716oveq2i 6534 . . . . . 6 (0..^(#‘⟨“01”⟩)) = (0..^2)
1815, 17eleqtrri 2682 . . . . 5 0 ∈ (0..^(#‘⟨“01”⟩))
1918a1i 11 . . . 4 (⊤ → 0 ∈ (0..^(#‘⟨“01”⟩)))
204, 9, 10, 12, 19sseqfv1 29580 . . 3 (⊤ → ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))))‘0) = (⟨“01”⟩‘0))
2120trud 1483 . 2 ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (# “ (ℤ‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))))‘0) = (⟨“01”⟩‘0)
22 s2fv0 13424 . . 3 (0 ∈ ℕ0 → (⟨“01”⟩‘0) = 0)
235, 22ax-mp 5 . 2 (⟨“01”⟩‘0) = 0
242, 21, 233eqtri 2631 1 (Fibci‘0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  wtru 1475  wcel 1975  Vcvv 3168  cin 3534  cmpt 4633  ccnv 5023  cima 5027  wf 5782  cfv 5786  (class class class)co 6523  0cc0 9788  1c1 9789   + caddc 9791  cmin 10113  cn 10863  2c2 10913  0cn0 11135  cuz 11515  ..^cfzo 12285  #chash 12930  Word cword 13088  ⟨“cs2 13379  seqstrcsseq 29574  Fibcicfib 29587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-map 7719  df-pm 7720  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-card 8621  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-2 10922  df-n0 11136  df-z 11207  df-uz 11516  df-rp 11661  df-fz 12149  df-fzo 12286  df-seq 12615  df-hash 12931  df-word 13096  df-lsw 13097  df-concat 13098  df-s1 13099  df-s2 13386  df-sseq 29575  df-fib 29588
This theorem is referenced by:  fib2  29593
  Copyright terms: Public domain W3C validator