MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardom Structured version   Visualization version   GIF version

Theorem ficardom 9392
Description: The cardinal number of a finite set is a finite ordinal. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 4-Feb-2013.)
Assertion
Ref Expression
ficardom (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)

Proof of Theorem ficardom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 8535 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
21biimpi 218 . 2 (𝐴 ∈ Fin → ∃𝑥 ∈ ω 𝐴𝑥)
3 finnum 9379 . . . . . . . 8 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
4 cardid2 9384 . . . . . . . 8 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
53, 4syl 17 . . . . . . 7 (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴)
6 entr 8563 . . . . . . 7 (((card‘𝐴) ≈ 𝐴𝐴𝑥) → (card‘𝐴) ≈ 𝑥)
75, 6sylan 582 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴𝑥) → (card‘𝐴) ≈ 𝑥)
8 cardon 9375 . . . . . . 7 (card‘𝐴) ∈ On
9 onomeneq 8710 . . . . . . 7 (((card‘𝐴) ∈ On ∧ 𝑥 ∈ ω) → ((card‘𝐴) ≈ 𝑥 ↔ (card‘𝐴) = 𝑥))
108, 9mpan 688 . . . . . 6 (𝑥 ∈ ω → ((card‘𝐴) ≈ 𝑥 ↔ (card‘𝐴) = 𝑥))
117, 10syl5ib 246 . . . . 5 (𝑥 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴𝑥) → (card‘𝐴) = 𝑥))
12 eleq1a 2910 . . . . 5 (𝑥 ∈ ω → ((card‘𝐴) = 𝑥 → (card‘𝐴) ∈ ω))
1311, 12syld 47 . . . 4 (𝑥 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴𝑥) → (card‘𝐴) ∈ ω))
1413expcomd 419 . . 3 (𝑥 ∈ ω → (𝐴𝑥 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)))
1514rexlimiv 3282 . 2 (∃𝑥 ∈ ω 𝐴𝑥 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω))
162, 15mpcom 38 1 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141   class class class wbr 5068  dom cdm 5557  Oncon0 6193  cfv 6357  ωcom 7582  cen 8508  Fincfn 8511  cardccrd 9366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370
This theorem is referenced by:  cardnn  9394  isinffi  9423  finnisoeu  9541  iunfictbso  9542  ficardun  9626  ficardun2  9627  pwsdompw  9628  ackbij1lem5  9648  ackbij1lem9  9652  ackbij1lem10  9653  ackbij1lem14  9657  ackbij1b  9663  ackbij2lem2  9664  ackbij2  9667  fin23lem22  9751  fin1a2lem11  9834  domtriomlem  9866  pwfseqlem4a  10085  pwfseqlem4  10086  hashkf  13695  hashginv  13697  hashcard  13719  hashcl  13720  hashdom  13743  hashun  13746  ishashinf  13824  ackbijnn  15185  mreexexd  16921
  Copyright terms: Public domain W3C validator