Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomndrng Structured version   Visualization version   GIF version

Theorem fidomndrng 19226
 Description: A finite domain is a division ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
fidomndrng.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
fidomndrng (𝐵 ∈ Fin → (𝑅 ∈ Domn ↔ 𝑅 ∈ DivRing))

Proof of Theorem fidomndrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnring 19215 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
21adantl 482 . . . 4 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → 𝑅 ∈ Ring)
3 domnnzr 19214 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
43adantl 482 . . . . . . . . . 10 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → 𝑅 ∈ NzRing)
5 eqid 2621 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
6 eqid 2621 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
75, 6nzrnz 19179 . . . . . . . . . 10 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
84, 7syl 17 . . . . . . . . 9 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (1r𝑅) ≠ (0g𝑅))
98neneqd 2795 . . . . . . . 8 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ¬ (1r𝑅) = (0g𝑅))
10 eqid 2621 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
1110, 6, 50unit 18601 . . . . . . . . 9 (𝑅 ∈ Ring → ((0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) = (0g𝑅)))
122, 11syl 17 . . . . . . . 8 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ((0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) = (0g𝑅)))
139, 12mtbird 315 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ¬ (0g𝑅) ∈ (Unit‘𝑅))
14 disjsn 4216 . . . . . . 7 (((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅ ↔ ¬ (0g𝑅) ∈ (Unit‘𝑅))
1513, 14sylibr 224 . . . . . 6 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅)
16 fidomndrng.b . . . . . . . 8 𝐵 = (Base‘𝑅)
1716, 10unitss 18581 . . . . . . 7 (Unit‘𝑅) ⊆ 𝐵
18 reldisj 3992 . . . . . . 7 ((Unit‘𝑅) ⊆ 𝐵 → (((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅ ↔ (Unit‘𝑅) ⊆ (𝐵 ∖ {(0g𝑅)})))
1917, 18ax-mp 5 . . . . . 6 (((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅ ↔ (Unit‘𝑅) ⊆ (𝐵 ∖ {(0g𝑅)}))
2015, 19sylib 208 . . . . 5 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (Unit‘𝑅) ⊆ (𝐵 ∖ {(0g𝑅)}))
21 eqid 2621 . . . . . . . . 9 (∥r𝑅) = (∥r𝑅)
22 eqid 2621 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
23 simplr 791 . . . . . . . . 9 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑅 ∈ Domn)
24 simpll 789 . . . . . . . . 9 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝐵 ∈ Fin)
25 simpr 477 . . . . . . . . 9 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥 ∈ (𝐵 ∖ {(0g𝑅)}))
26 eqid 2621 . . . . . . . . 9 (𝑦𝐵 ↦ (𝑦(.r𝑅)𝑥)) = (𝑦𝐵 ↦ (𝑦(.r𝑅)𝑥))
2716, 6, 5, 21, 22, 23, 24, 25, 26fidomndrnglem 19225 . . . . . . . 8 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥(∥r𝑅)(1r𝑅))
28 eqid 2621 . . . . . . . . . 10 (oppr𝑅) = (oppr𝑅)
2928, 16opprbas 18550 . . . . . . . . 9 𝐵 = (Base‘(oppr𝑅))
3028, 6oppr0 18554 . . . . . . . . 9 (0g𝑅) = (0g‘(oppr𝑅))
3128, 5oppr1 18555 . . . . . . . . 9 (1r𝑅) = (1r‘(oppr𝑅))
32 eqid 2621 . . . . . . . . 9 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
33 eqid 2621 . . . . . . . . 9 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
3428opprdomn 19220 . . . . . . . . . 10 (𝑅 ∈ Domn → (oppr𝑅) ∈ Domn)
3523, 34syl 17 . . . . . . . . 9 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → (oppr𝑅) ∈ Domn)
36 eqid 2621 . . . . . . . . 9 (𝑦𝐵 ↦ (𝑦(.r‘(oppr𝑅))𝑥)) = (𝑦𝐵 ↦ (𝑦(.r‘(oppr𝑅))𝑥))
3729, 30, 31, 32, 33, 35, 24, 25, 36fidomndrnglem 19225 . . . . . . . 8 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥(∥r‘(oppr𝑅))(1r𝑅))
3810, 5, 21, 28, 32isunit 18578 . . . . . . . 8 (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)))
3927, 37, 38sylanbrc 697 . . . . . . 7 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥 ∈ (Unit‘𝑅))
4039ex 450 . . . . . 6 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (𝑥 ∈ (𝐵 ∖ {(0g𝑅)}) → 𝑥 ∈ (Unit‘𝑅)))
4140ssrdv 3589 . . . . 5 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (𝐵 ∖ {(0g𝑅)}) ⊆ (Unit‘𝑅))
4220, 41eqssd 3600 . . . 4 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)}))
4316, 10, 6isdrng 18672 . . . 4 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)})))
442, 42, 43sylanbrc 697 . . 3 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → 𝑅 ∈ DivRing)
4544ex 450 . 2 (𝐵 ∈ Fin → (𝑅 ∈ Domn → 𝑅 ∈ DivRing))
46 drngdomn 19222 . 2 (𝑅 ∈ DivRing → 𝑅 ∈ Domn)
4745, 46impbid1 215 1 (𝐵 ∈ Fin → (𝑅 ∈ Domn ↔ 𝑅 ∈ DivRing))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   ∖ cdif 3552   ∩ cin 3554   ⊆ wss 3555  ∅c0 3891  {csn 4148   class class class wbr 4613   ↦ cmpt 4673  ‘cfv 5847  (class class class)co 6604  Fincfn 7899  Basecbs 15781  .rcmulr 15863  0gc0g 16021  1rcur 18422  Ringcrg 18468  opprcoppr 18543  ∥rcdsr 18559  Unitcui 18560  DivRingcdr 18668  NzRingcnzr 19176  Domncdomn 19199 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-ghm 17579  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-drng 18670  df-nzr 19177  df-rlreg 19202  df-domn 19203 This theorem is referenced by:  fiidomfld  19227
 Copyright terms: Public domain W3C validator