MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomndrng Structured version   Visualization version   GIF version

Theorem fidomndrng 19226
Description: A finite domain is a division ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
fidomndrng.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
fidomndrng (𝐵 ∈ Fin → (𝑅 ∈ Domn ↔ 𝑅 ∈ DivRing))

Proof of Theorem fidomndrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnring 19215 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
21adantl 482 . . . 4 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → 𝑅 ∈ Ring)
3 domnnzr 19214 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
43adantl 482 . . . . . . . . . 10 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → 𝑅 ∈ NzRing)
5 eqid 2621 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
6 eqid 2621 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
75, 6nzrnz 19179 . . . . . . . . . 10 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
84, 7syl 17 . . . . . . . . 9 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (1r𝑅) ≠ (0g𝑅))
98neneqd 2795 . . . . . . . 8 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ¬ (1r𝑅) = (0g𝑅))
10 eqid 2621 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
1110, 6, 50unit 18601 . . . . . . . . 9 (𝑅 ∈ Ring → ((0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) = (0g𝑅)))
122, 11syl 17 . . . . . . . 8 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ((0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) = (0g𝑅)))
139, 12mtbird 315 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ¬ (0g𝑅) ∈ (Unit‘𝑅))
14 disjsn 4216 . . . . . . 7 (((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅ ↔ ¬ (0g𝑅) ∈ (Unit‘𝑅))
1513, 14sylibr 224 . . . . . 6 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → ((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅)
16 fidomndrng.b . . . . . . . 8 𝐵 = (Base‘𝑅)
1716, 10unitss 18581 . . . . . . 7 (Unit‘𝑅) ⊆ 𝐵
18 reldisj 3992 . . . . . . 7 ((Unit‘𝑅) ⊆ 𝐵 → (((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅ ↔ (Unit‘𝑅) ⊆ (𝐵 ∖ {(0g𝑅)})))
1917, 18ax-mp 5 . . . . . 6 (((Unit‘𝑅) ∩ {(0g𝑅)}) = ∅ ↔ (Unit‘𝑅) ⊆ (𝐵 ∖ {(0g𝑅)}))
2015, 19sylib 208 . . . . 5 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (Unit‘𝑅) ⊆ (𝐵 ∖ {(0g𝑅)}))
21 eqid 2621 . . . . . . . . 9 (∥r𝑅) = (∥r𝑅)
22 eqid 2621 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
23 simplr 791 . . . . . . . . 9 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑅 ∈ Domn)
24 simpll 789 . . . . . . . . 9 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝐵 ∈ Fin)
25 simpr 477 . . . . . . . . 9 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥 ∈ (𝐵 ∖ {(0g𝑅)}))
26 eqid 2621 . . . . . . . . 9 (𝑦𝐵 ↦ (𝑦(.r𝑅)𝑥)) = (𝑦𝐵 ↦ (𝑦(.r𝑅)𝑥))
2716, 6, 5, 21, 22, 23, 24, 25, 26fidomndrnglem 19225 . . . . . . . 8 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥(∥r𝑅)(1r𝑅))
28 eqid 2621 . . . . . . . . . 10 (oppr𝑅) = (oppr𝑅)
2928, 16opprbas 18550 . . . . . . . . 9 𝐵 = (Base‘(oppr𝑅))
3028, 6oppr0 18554 . . . . . . . . 9 (0g𝑅) = (0g‘(oppr𝑅))
3128, 5oppr1 18555 . . . . . . . . 9 (1r𝑅) = (1r‘(oppr𝑅))
32 eqid 2621 . . . . . . . . 9 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
33 eqid 2621 . . . . . . . . 9 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
3428opprdomn 19220 . . . . . . . . . 10 (𝑅 ∈ Domn → (oppr𝑅) ∈ Domn)
3523, 34syl 17 . . . . . . . . 9 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → (oppr𝑅) ∈ Domn)
36 eqid 2621 . . . . . . . . 9 (𝑦𝐵 ↦ (𝑦(.r‘(oppr𝑅))𝑥)) = (𝑦𝐵 ↦ (𝑦(.r‘(oppr𝑅))𝑥))
3729, 30, 31, 32, 33, 35, 24, 25, 36fidomndrnglem 19225 . . . . . . . 8 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥(∥r‘(oppr𝑅))(1r𝑅))
3810, 5, 21, 28, 32isunit 18578 . . . . . . . 8 (𝑥 ∈ (Unit‘𝑅) ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)))
3927, 37, 38sylanbrc 697 . . . . . . 7 (((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) ∧ 𝑥 ∈ (𝐵 ∖ {(0g𝑅)})) → 𝑥 ∈ (Unit‘𝑅))
4039ex 450 . . . . . 6 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (𝑥 ∈ (𝐵 ∖ {(0g𝑅)}) → 𝑥 ∈ (Unit‘𝑅)))
4140ssrdv 3589 . . . . 5 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (𝐵 ∖ {(0g𝑅)}) ⊆ (Unit‘𝑅))
4220, 41eqssd 3600 . . . 4 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)}))
4316, 10, 6isdrng 18672 . . . 4 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = (𝐵 ∖ {(0g𝑅)})))
442, 42, 43sylanbrc 697 . . 3 ((𝐵 ∈ Fin ∧ 𝑅 ∈ Domn) → 𝑅 ∈ DivRing)
4544ex 450 . 2 (𝐵 ∈ Fin → (𝑅 ∈ Domn → 𝑅 ∈ DivRing))
46 drngdomn 19222 . 2 (𝑅 ∈ DivRing → 𝑅 ∈ Domn)
4745, 46impbid1 215 1 (𝐵 ∈ Fin → (𝑅 ∈ Domn ↔ 𝑅 ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  cdif 3552  cin 3554  wss 3555  c0 3891  {csn 4148   class class class wbr 4613  cmpt 4673  cfv 5847  (class class class)co 6604  Fincfn 7899  Basecbs 15781  .rcmulr 15863  0gc0g 16021  1rcur 18422  Ringcrg 18468  opprcoppr 18543  rcdsr 18559  Unitcui 18560  DivRingcdr 18668  NzRingcnzr 19176  Domncdomn 19199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-ghm 17579  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-drng 18670  df-nzr 19177  df-rlreg 19202  df-domn 19203
This theorem is referenced by:  fiidomfld  19227
  Copyright terms: Public domain W3C validator