MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomndrnglem Structured version   Visualization version   GIF version

Theorem fidomndrnglem 19220
Description: Lemma for fidomndrng 19221. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
fidomndrng.b 𝐵 = (Base‘𝑅)
fidomndrng.z 0 = (0g𝑅)
fidomndrng.o 1 = (1r𝑅)
fidomndrng.d = (∥r𝑅)
fidomndrng.t · = (.r𝑅)
fidomndrng.r (𝜑𝑅 ∈ Domn)
fidomndrng.x (𝜑𝐵 ∈ Fin)
fidomndrng.a (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))
fidomndrng.f 𝐹 = (𝑥𝐵 ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
fidomndrnglem (𝜑𝐴 1 )
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥, ·
Allowed substitution hints:   𝜑(𝑥)   (𝑥)   1 (𝑥)   𝐹(𝑥)   0 (𝑥)

Proof of Theorem fidomndrnglem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fidomndrng.a . . . 4 (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))
21eldifad 3572 . . 3 (𝜑𝐴𝐵)
3 eldifsni 4294 . . . . . . . . . . . 12 (𝐴 ∈ (𝐵 ∖ { 0 }) → 𝐴0 )
41, 3syl 17 . . . . . . . . . . 11 (𝜑𝐴0 )
54ad2antrr 761 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → 𝐴0 )
6 oveq1 6612 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
7 fidomndrng.f . . . . . . . . . . . . . . . . 17 𝐹 = (𝑥𝐵 ↦ (𝑥 · 𝐴))
8 ovex 6633 . . . . . . . . . . . . . . . . 17 (𝑦 · 𝐴) ∈ V
96, 7, 8fvmpt 6240 . . . . . . . . . . . . . . . 16 (𝑦𝐵 → (𝐹𝑦) = (𝑦 · 𝐴))
109adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → (𝐹𝑦) = (𝑦 · 𝐴))
1110eqeq1d 2628 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → ((𝐹𝑦) = 0 ↔ (𝑦 · 𝐴) = 0 ))
12 fidomndrng.r . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ Domn)
1312adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → 𝑅 ∈ Domn)
14 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → 𝑦𝐵)
152adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐵) → 𝐴𝐵)
16 fidomndrng.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝑅)
17 fidomndrng.t . . . . . . . . . . . . . . . 16 · = (.r𝑅)
18 fidomndrng.z . . . . . . . . . . . . . . . 16 0 = (0g𝑅)
1916, 17, 18domneq0 19211 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Domn ∧ 𝑦𝐵𝐴𝐵) → ((𝑦 · 𝐴) = 0 ↔ (𝑦 = 0𝐴 = 0 )))
2013, 14, 15, 19syl3anc 1323 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → ((𝑦 · 𝐴) = 0 ↔ (𝑦 = 0𝐴 = 0 )))
2111, 20bitrd 268 . . . . . . . . . . . . 13 ((𝜑𝑦𝐵) → ((𝐹𝑦) = 0 ↔ (𝑦 = 0𝐴 = 0 )))
2221biimpa 501 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → (𝑦 = 0𝐴 = 0 ))
2322ord 392 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → (¬ 𝑦 = 0𝐴 = 0 ))
2423necon1ad 2813 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → (𝐴0𝑦 = 0 ))
255, 24mpd 15 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ (𝐹𝑦) = 0 ) → 𝑦 = 0 )
2625ex 450 . . . . . . . 8 ((𝜑𝑦𝐵) → ((𝐹𝑦) = 0𝑦 = 0 ))
2726ralrimiva 2965 . . . . . . 7 (𝜑 → ∀𝑦𝐵 ((𝐹𝑦) = 0𝑦 = 0 ))
28 domnring 19210 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
2912, 28syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
3016, 17ringrghm 18521 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝐴)) ∈ (𝑅 GrpHom 𝑅))
3129, 2, 30syl2anc 692 . . . . . . . . 9 (𝜑 → (𝑥𝐵 ↦ (𝑥 · 𝐴)) ∈ (𝑅 GrpHom 𝑅))
327, 31syl5eqel 2708 . . . . . . . 8 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑅))
3316, 16, 18, 18ghmf1 17605 . . . . . . . 8 (𝐹 ∈ (𝑅 GrpHom 𝑅) → (𝐹:𝐵1-1𝐵 ↔ ∀𝑦𝐵 ((𝐹𝑦) = 0𝑦 = 0 )))
3432, 33syl 17 . . . . . . 7 (𝜑 → (𝐹:𝐵1-1𝐵 ↔ ∀𝑦𝐵 ((𝐹𝑦) = 0𝑦 = 0 )))
3527, 34mpbird 247 . . . . . 6 (𝜑𝐹:𝐵1-1𝐵)
36 fidomndrng.x . . . . . . . 8 (𝜑𝐵 ∈ Fin)
37 enrefg 7932 . . . . . . . 8 (𝐵 ∈ Fin → 𝐵𝐵)
3836, 37syl 17 . . . . . . 7 (𝜑𝐵𝐵)
39 f1finf1o 8132 . . . . . . 7 ((𝐵𝐵𝐵 ∈ Fin) → (𝐹:𝐵1-1𝐵𝐹:𝐵1-1-onto𝐵))
4038, 36, 39syl2anc 692 . . . . . 6 (𝜑 → (𝐹:𝐵1-1𝐵𝐹:𝐵1-1-onto𝐵))
4135, 40mpbid 222 . . . . 5 (𝜑𝐹:𝐵1-1-onto𝐵)
42 f1ocnv 6108 . . . . 5 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵1-1-onto𝐵)
43 f1of 6096 . . . . 5 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
4441, 42, 433syl 18 . . . 4 (𝜑𝐹:𝐵𝐵)
45 fidomndrng.o . . . . . 6 1 = (1r𝑅)
4616, 45ringidcl 18484 . . . . 5 (𝑅 ∈ Ring → 1𝐵)
4729, 46syl 17 . . . 4 (𝜑1𝐵)
4844, 47ffvelrnd 6317 . . 3 (𝜑 → (𝐹1 ) ∈ 𝐵)
49 fidomndrng.d . . . 4 = (∥r𝑅)
5016, 49, 17dvdsrmul 18564 . . 3 ((𝐴𝐵 ∧ (𝐹1 ) ∈ 𝐵) → 𝐴 ((𝐹1 ) · 𝐴))
512, 48, 50syl2anc 692 . 2 (𝜑𝐴 ((𝐹1 ) · 𝐴))
52 oveq1 6612 . . . . 5 (𝑦 = (𝐹1 ) → (𝑦 · 𝐴) = ((𝐹1 ) · 𝐴))
536cbvmptv 4715 . . . . . 6 (𝑥𝐵 ↦ (𝑥 · 𝐴)) = (𝑦𝐵 ↦ (𝑦 · 𝐴))
547, 53eqtri 2648 . . . . 5 𝐹 = (𝑦𝐵 ↦ (𝑦 · 𝐴))
55 ovex 6633 . . . . 5 ((𝐹1 ) · 𝐴) ∈ V
5652, 54, 55fvmpt 6240 . . . 4 ((𝐹1 ) ∈ 𝐵 → (𝐹‘(𝐹1 )) = ((𝐹1 ) · 𝐴))
5748, 56syl 17 . . 3 (𝜑 → (𝐹‘(𝐹1 )) = ((𝐹1 ) · 𝐴))
58 f1ocnvfv2 6488 . . . 4 ((𝐹:𝐵1-1-onto𝐵1𝐵) → (𝐹‘(𝐹1 )) = 1 )
5941, 47, 58syl2anc 692 . . 3 (𝜑 → (𝐹‘(𝐹1 )) = 1 )
6057, 59eqtr3d 2662 . 2 (𝜑 → ((𝐹1 ) · 𝐴) = 1 )
6151, 60breqtrd 4644 1 (𝜑𝐴 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1992  wne 2796  wral 2912  cdif 3557  {csn 4153   class class class wbr 4618  cmpt 4678  ccnv 5078  wf 5846  1-1wf1 5847  1-1-ontowf1o 5849  cfv 5850  (class class class)co 6605  cen 7897  Fincfn 7900  Basecbs 15776  .rcmulr 15858  0gc0g 16016   GrpHom cghm 17573  1rcur 18417  Ringcrg 18463  rcdsr 18554  Domncdomn 19194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-plusg 15870  df-0g 16018  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-grp 17341  df-minusg 17342  df-sbg 17343  df-ghm 17574  df-mgp 18406  df-ur 18418  df-ring 18465  df-dvdsr 18557  df-nzr 19172  df-domn 19198
This theorem is referenced by:  fidomndrng  19221
  Copyright terms: Public domain W3C validator