MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomtri Structured version   Visualization version   GIF version

Theorem fidomtri 8763
Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
fidomtri ((𝐴 ∈ Fin ∧ 𝐵𝑉) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem fidomtri
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 domnsym 8030 . 2 (𝐴𝐵 → ¬ 𝐵𝐴)
2 finnum 8718 . . . . . 6 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
32adantr 481 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → 𝐴 ∈ dom card)
4 finnum 8718 . . . . 5 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
5 domtri2 8759 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
63, 4, 5syl2an 494 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
76biimprd 238 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → (¬ 𝐵𝐴𝐴𝐵))
8 isinffi 8762 . . . . . . 7 ((¬ 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ∃𝑎 𝑎:𝐴1-1𝐵)
98ancoms 469 . . . . . 6 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴1-1𝐵)
109adantlr 750 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ∃𝑎 𝑎:𝐴1-1𝐵)
11 brdomg 7909 . . . . . 6 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑎 𝑎:𝐴1-1𝐵))
1211ad2antlr 762 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ∃𝑎 𝑎:𝐴1-1𝐵))
1310, 12mpbird 247 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → 𝐴𝐵)
1413a1d 25 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (¬ 𝐵𝐴𝐴𝐵))
157, 14pm2.61dan 831 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → (¬ 𝐵𝐴𝐴𝐵))
161, 15impbid2 216 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wex 1701  wcel 1987   class class class wbr 4613  dom cdm 5074  1-1wf1 5844  cdom 7897  csdm 7898  Fincfn 7899  cardccrd 8705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709
This theorem is referenced by:  fidomtri2  8764  fin56  9159  hauspwdom  21214  harinf  37081
  Copyright terms: Public domain W3C validator