![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fidomtri2 | Structured version Visualization version GIF version |
Description: Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
fidomtri2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnsym 8251 | . 2 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
2 | sdomdom 8149 | . . . . . . 7 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
3 | 2 | con3i 150 | . . . . . 6 ⊢ (¬ 𝐴 ≼ 𝐵 → ¬ 𝐴 ≺ 𝐵) |
4 | fidomtri 9009 | . . . . . . 7 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ∈ 𝑉) → (𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵)) | |
5 | 4 | ancoms 468 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵)) |
6 | 3, 5 | syl5ibr 236 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (¬ 𝐴 ≼ 𝐵 → 𝐵 ≼ 𝐴)) |
7 | ensym 8170 | . . . . . . . 8 ⊢ (𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵) | |
8 | endom 8148 | . . . . . . . 8 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝐵 ≈ 𝐴 → 𝐴 ≼ 𝐵) |
10 | 9 | con3i 150 | . . . . . 6 ⊢ (¬ 𝐴 ≼ 𝐵 → ¬ 𝐵 ≈ 𝐴) |
11 | 10 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (¬ 𝐴 ≼ 𝐵 → ¬ 𝐵 ≈ 𝐴)) |
12 | 6, 11 | jcad 556 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (¬ 𝐴 ≼ 𝐵 → (𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴))) |
13 | brsdom 8144 | . . . 4 ⊢ (𝐵 ≺ 𝐴 ↔ (𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴)) | |
14 | 12, 13 | syl6ibr 242 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (¬ 𝐴 ≼ 𝐵 → 𝐵 ≺ 𝐴)) |
15 | 14 | con1d 139 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (¬ 𝐵 ≺ 𝐴 → 𝐴 ≼ 𝐵)) |
16 | 1, 15 | impbid2 216 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 class class class wbr 4804 ≈ cen 8118 ≼ cdom 8119 ≺ csdm 8120 Fincfn 8121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7231 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 |
This theorem is referenced by: gchdomtri 9643 gchcda1 9670 frgpcyg 20124 |
Copyright terms: Public domain | W3C validator |