MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fifo Structured version   Visualization version   GIF version

Theorem fifo 8282
Description: Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.)
Hypothesis
Ref Expression
fifo.1 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦)
Assertion
Ref Expression
fifo (𝐴𝑉𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem fifo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsni 4289 . . . . . 6 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
2 intex 4780 . . . . . 6 (𝑦 ≠ ∅ ↔ 𝑦 ∈ V)
31, 2sylib 208 . . . . 5 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ∈ V)
43rgen 2917 . . . 4 𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) 𝑦 ∈ V
5 fifo.1 . . . . 5 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦)
65fnmpt 5977 . . . 4 (∀𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) 𝑦 ∈ V → 𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}))
74, 6mp1i 13 . . 3 (𝐴𝑉𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}))
8 dffn4 6078 . . 3 (𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)
97, 8sylib 208 . 2 (𝐴𝑉𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)
10 elfi2 8264 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = 𝑦))
11 vex 3189 . . . . . 6 𝑥 ∈ V
125elrnmpt 5332 . . . . . 6 (𝑥 ∈ V → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = 𝑦))
1311, 12ax-mp 5 . . . . 5 (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = 𝑦)
1410, 13syl6bbr 278 . . . 4 (𝐴𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ 𝑥 ∈ ran 𝐹))
1514eqrdv 2619 . . 3 (𝐴𝑉 → (fi‘𝐴) = ran 𝐹)
16 foeq3 6070 . . 3 ((fi‘𝐴) = ran 𝐹 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹))
1715, 16syl 17 . 2 (𝐴𝑉 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹))
189, 17mpbird 247 1 (𝐴𝑉𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3186  cdif 3552  cin 3554  c0 3891  𝒫 cpw 4130  {csn 4148   cint 4440  cmpt 4673  ran crn 5075   Fn wfn 5842  ontowfo 5845  cfv 5847  Fincfn 7899  ficfi 8260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-int 4441  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-iota 5810  df-fun 5849  df-fn 5850  df-fo 5853  df-fv 5855  df-fi 8261
This theorem is referenced by:  inffien  8830  fictb  9011
  Copyright terms: Public domain W3C validator