MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiint Structured version   Visualization version   GIF version

Theorem fiint 8189
Description: Equivalent ways of stating the finite intersection property. We show two ways of saying, "the intersection of elements in every finite nonempty subcollection of 𝐴 is in 𝐴." This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use the left-hand version of this axiom and others the right-hand version, but as our proof here shows, their "intuitively obvious" equivalence can be non-trivial to establish formally. (Contributed by NM, 22-Sep-2002.)
Assertion
Ref Expression
fiint (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem fiint
Dummy variables 𝑧 𝑤 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 7931 . . . . . . 7 (𝑥 ∈ Fin ↔ ∃𝑦 ∈ ω 𝑥𝑦)
2 ensym 7957 . . . . . . . . 9 (𝑥𝑦𝑦𝑥)
3 breq1 4621 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → (𝑦𝑥 ↔ ∅ ≈ 𝑥))
43anbi2d 739 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥)))
54imbi1d 331 . . . . . . . . . . . . . 14 (𝑦 = ∅ → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)))
65albidv 1846 . . . . . . . . . . . . 13 (𝑦 = ∅ → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)))
7 breq1 4621 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑣 → (𝑦𝑥𝑣𝑥))
87anbi2d 739 . . . . . . . . . . . . . . 15 (𝑦 = 𝑣 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥)))
98imbi1d 331 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)))
109albidv 1846 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)))
11 breq1 4621 . . . . . . . . . . . . . . . 16 (𝑦 = suc 𝑣 → (𝑦𝑥 ↔ suc 𝑣𝑥))
1211anbi2d 739 . . . . . . . . . . . . . . 15 (𝑦 = suc 𝑣 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥)))
1312imbi1d 331 . . . . . . . . . . . . . 14 (𝑦 = suc 𝑣 → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
1413albidv 1846 . . . . . . . . . . . . 13 (𝑦 = suc 𝑣 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
15 ensym 7957 . . . . . . . . . . . . . . . . . . . 20 (∅ ≈ 𝑥𝑥 ≈ ∅)
16 en0 7971 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
1715, 16sylib 208 . . . . . . . . . . . . . . . . . . 19 (∅ ≈ 𝑥𝑥 = ∅)
1817anim1i 591 . . . . . . . . . . . . . . . . . 18 ((∅ ≈ 𝑥𝑥 ≠ ∅) → (𝑥 = ∅ ∧ 𝑥 ≠ ∅))
1918ancoms 469 . . . . . . . . . . . . . . . . 17 ((𝑥 ≠ ∅ ∧ ∅ ≈ 𝑥) → (𝑥 = ∅ ∧ 𝑥 ≠ ∅))
2019adantll 749 . . . . . . . . . . . . . . . 16 (((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → (𝑥 = ∅ ∧ 𝑥 ≠ ∅))
21 df-ne 2791 . . . . . . . . . . . . . . . . 17 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
22 pm3.24 925 . . . . . . . . . . . . . . . . . 18 ¬ (𝑥 = ∅ ∧ ¬ 𝑥 = ∅)
2322pm2.21i 116 . . . . . . . . . . . . . . . . 17 ((𝑥 = ∅ ∧ ¬ 𝑥 = ∅) → 𝑥𝐴)
2421, 23sylan2b 492 . . . . . . . . . . . . . . . 16 ((𝑥 = ∅ ∧ 𝑥 ≠ ∅) → 𝑥𝐴)
2520, 24syl 17 . . . . . . . . . . . . . . 15 (((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)
2625ax-gen 1719 . . . . . . . . . . . . . 14 𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴)
2726a1i 11 . . . . . . . . . . . . 13 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ ∅ ≈ 𝑥) → 𝑥𝐴))
28 nfv 1840 . . . . . . . . . . . . . . 15 𝑥𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴
29 nfa1 2025 . . . . . . . . . . . . . . 15 𝑥𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)
30 bren 7916 . . . . . . . . . . . . . . . . . . 19 (suc 𝑣𝑥 ↔ ∃𝑓 𝑓:suc 𝑣1-1-onto𝑥)
31 ssel 3581 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐴 → ((𝑓𝑣) ∈ 𝑥 → (𝑓𝑣) ∈ 𝐴))
32 f1of 6099 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:suc 𝑣1-1-onto𝑥𝑓:suc 𝑣𝑥)
33 vex 3192 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑣 ∈ V
3433sucid 5768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑣 ∈ suc 𝑣
35 ffvelrn 6318 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓:suc 𝑣𝑥𝑣 ∈ suc 𝑣) → (𝑓𝑣) ∈ 𝑥)
3632, 34, 35sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓𝑣) ∈ 𝑥)
3731, 36impel 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) → (𝑓𝑣) ∈ 𝐴)
3837adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (𝑓𝑣) ∈ 𝐴)
39 df-ne 2791 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓𝑣) ≠ ∅ ↔ ¬ (𝑓𝑣) = ∅)
40 imassrn 5441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓𝑣) ⊆ ran 𝑓
41 dff1o2 6104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑓:suc 𝑣1-1-onto𝑥 ↔ (𝑓 Fn suc 𝑣 ∧ Fun 𝑓 ∧ ran 𝑓 = 𝑥))
4241simp3bi 1076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓:suc 𝑣1-1-onto𝑥 → ran 𝑓 = 𝑥)
4340, 42syl5sseq 3637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓𝑣) ⊆ 𝑥)
44 sstr2 3594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑓𝑣) ⊆ 𝑥 → (𝑥𝐴 → (𝑓𝑣) ⊆ 𝐴))
4543, 44syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑥𝐴 → (𝑓𝑣) ⊆ 𝐴))
4645anim1d 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → ((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅)))
47 f1of1 6098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓:suc 𝑣1-1-onto𝑥𝑓:suc 𝑣1-1𝑥)
48 vex 3192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑥 ∈ V
49 sssucid 5766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑣 ⊆ suc 𝑣
50 f1imaen2g 7969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑓:suc 𝑣1-1𝑥𝑥 ∈ V) ∧ (𝑣 ⊆ suc 𝑣𝑣 ∈ V)) → (𝑓𝑣) ≈ 𝑣)
5149, 33, 50mpanr12 720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑓:suc 𝑣1-1𝑥𝑥 ∈ V) → (𝑓𝑣) ≈ 𝑣)
5247, 48, 51sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓𝑣) ≈ 𝑣)
5352ensymd 7959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓:suc 𝑣1-1-onto𝑥𝑣 ≈ (𝑓𝑣))
5446, 53jctird 566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → (((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣))))
55 vex 3192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑓 ∈ V
5655imaex 7058 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓𝑣) ∈ V
57 sseq1 3610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 = (𝑓𝑣) → (𝑥𝐴 ↔ (𝑓𝑣) ⊆ 𝐴))
58 neeq1 2852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 = (𝑓𝑣) → (𝑥 ≠ ∅ ↔ (𝑓𝑣) ≠ ∅))
5957, 58anbi12d 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 = (𝑓𝑣) → ((𝑥𝐴𝑥 ≠ ∅) ↔ ((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅)))
60 breq2 4622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 = (𝑓𝑣) → (𝑣𝑥𝑣 ≈ (𝑓𝑣)))
6159, 60anbi12d 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = (𝑓𝑣) → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) ↔ (((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣))))
62 inteq 4448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 = (𝑓𝑣) → 𝑥 = (𝑓𝑣))
6362eleq1d 2683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = (𝑓𝑣) → ( 𝑥𝐴 (𝑓𝑣) ∈ 𝐴))
6461, 63imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑓𝑣) → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ↔ ((((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣)) → (𝑓𝑣) ∈ 𝐴)))
6556, 64spcv 3288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → ((((𝑓𝑣) ⊆ 𝐴 ∧ (𝑓𝑣) ≠ ∅) ∧ 𝑣 ≈ (𝑓𝑣)) → (𝑓𝑣) ∈ 𝐴))
6654, 65sylan9 688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓:suc 𝑣1-1-onto𝑥 ∧ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)) → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → (𝑓𝑣) ∈ 𝐴))
67 ineq1 3790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = (𝑓𝑣) → (𝑧𝑤) = ( (𝑓𝑣) ∩ 𝑤))
6867eleq1d 2683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = (𝑓𝑣) → ((𝑧𝑤) ∈ 𝐴 ↔ ( (𝑓𝑣) ∩ 𝑤) ∈ 𝐴))
69 ineq2 3791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑤 = (𝑓𝑣) → ( (𝑓𝑣) ∩ 𝑤) = ( (𝑓𝑣) ∩ (𝑓𝑣)))
7069eleq1d 2683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 = (𝑓𝑣) → (( (𝑓𝑣) ∩ 𝑤) ∈ 𝐴 ↔ ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
7168, 70rspc2v 3310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (( (𝑓𝑣) ∈ 𝐴 ∧ (𝑓𝑣) ∈ 𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
7271ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ( (𝑓𝑣) ∈ 𝐴 → ((𝑓𝑣) ∈ 𝐴 → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
7366, 72syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑓:suc 𝑣1-1-onto𝑥 ∧ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)) → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → ((𝑓𝑣) ∈ 𝐴 → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))
7473com4r 94 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑓:suc 𝑣1-1-onto𝑥 ∧ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴)) → ((𝑥𝐴 ∧ (𝑓𝑣) ≠ ∅) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))
7574exp5c 643 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (𝑥𝐴 → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))))
7675com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝐴 → (𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))))))
7776imp43 620 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ((𝑓𝑣) ≠ ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
7839, 77syl5bir 233 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (¬ (𝑓𝑣) = ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)))
79 inteq 4448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑓𝑣) = ∅ → (𝑓𝑣) = ∅)
80 int0 4460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ∅ = V
8179, 80syl6eq 2671 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓𝑣) = ∅ → (𝑓𝑣) = V)
8281ineq1d 3796 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓𝑣) = ∅ → ( (𝑓𝑣) ∩ (𝑓𝑣)) = (V ∩ (𝑓𝑣)))
83 ssv 3609 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓𝑣) ⊆ V
84 sseqin2 3800 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓𝑣) ⊆ V ↔ (V ∩ (𝑓𝑣)) = (𝑓𝑣))
8583, 84mpbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (V ∩ (𝑓𝑣)) = (𝑓𝑣)
8682, 85syl6eq 2671 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓𝑣) = ∅ → ( (𝑓𝑣) ∩ (𝑓𝑣)) = (𝑓𝑣))
8786eleq1d 2683 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓𝑣) = ∅ → (( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴 ↔ (𝑓𝑣) ∈ 𝐴))
8887biimprd 238 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑣) = ∅ → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
8978, 88pm2.61d2 172 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ((𝑓𝑣) ∈ 𝐴 → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴))
9038, 89mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → ( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴)
91 fvex 6163 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓𝑣) ∈ V
9291intunsn 4486 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓𝑣) ∪ {(𝑓𝑣)}) = ( (𝑓𝑣) ∩ (𝑓𝑣))
93 f1ofn 6100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓:suc 𝑣1-1-onto𝑥𝑓 Fn suc 𝑣)
94 fnsnfv 6220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑓 Fn suc 𝑣𝑣 ∈ suc 𝑣) → {(𝑓𝑣)} = (𝑓 “ {𝑣}))
9593, 34, 94sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:suc 𝑣1-1-onto𝑥 → {(𝑓𝑣)} = (𝑓 “ {𝑣}))
9695uneq2d 3750 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑓𝑣) ∪ {(𝑓𝑣)}) = ((𝑓𝑣) ∪ (𝑓 “ {𝑣})))
97 df-suc 5693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 suc 𝑣 = (𝑣 ∪ {𝑣})
9897imaeq2i 5428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 “ suc 𝑣) = (𝑓 “ (𝑣 ∪ {𝑣}))
99 imaundi 5509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 “ (𝑣 ∪ {𝑣})) = ((𝑓𝑣) ∪ (𝑓 “ {𝑣}))
10098, 99eqtr2i 2644 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓𝑣) ∪ (𝑓 “ {𝑣})) = (𝑓 “ suc 𝑣)
10196, 100syl6eq 2671 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑓𝑣) ∪ {(𝑓𝑣)}) = (𝑓 “ suc 𝑣))
102 f1ofo 6106 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:suc 𝑣1-1-onto𝑥𝑓:suc 𝑣onto𝑥)
103 foima 6082 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓:suc 𝑣onto𝑥 → (𝑓 “ suc 𝑣) = 𝑥)
104102, 103syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓:suc 𝑣1-1-onto𝑥 → (𝑓 “ suc 𝑣) = 𝑥)
105101, 104eqtrd 2655 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:suc 𝑣1-1-onto𝑥 → ((𝑓𝑣) ∪ {(𝑓𝑣)}) = 𝑥)
106105inteqd 4450 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:suc 𝑣1-1-onto𝑥 ((𝑓𝑣) ∪ {(𝑓𝑣)}) = 𝑥)
10792, 106syl5eqr 2669 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:suc 𝑣1-1-onto𝑥 → ( (𝑓𝑣) ∩ (𝑓𝑣)) = 𝑥)
108107eleq1d 2683 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:suc 𝑣1-1-onto𝑥 → (( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴 𝑥𝐴))
109108ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → (( (𝑓𝑣) ∩ (𝑓𝑣)) ∈ 𝐴 𝑥𝐴))
11090, 109mpbid 222 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴𝑓:suc 𝑣1-1-onto𝑥) ∧ (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)) → 𝑥𝐴)
111110exp43 639 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴 → (𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
112111exlimdv 1858 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (∃𝑓 𝑓:suc 𝑣1-1-onto𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
11330, 112syl5bi 232 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → (suc 𝑣𝑥 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
114113imp 445 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴 ∧ suc 𝑣𝑥) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴)))
115114adantlr 750 . . . . . . . . . . . . . . . 16 (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴)))
116115com13 88 . . . . . . . . . . . . . . 15 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → (((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
11728, 29, 116alrimd 2082 . . . . . . . . . . . . . 14 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴)))
118117a1i 11 . . . . . . . . . . . . 13 (𝑣 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑣𝑥) → 𝑥𝐴) → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ suc 𝑣𝑥) → 𝑥𝐴))))
1196, 10, 14, 27, 118finds2 7048 . . . . . . . . . . . 12 (𝑦 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴)))
120 sp 2051 . . . . . . . . . . . 12 (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴) → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴))
121119, 120syl6 35 . . . . . . . . . . 11 (𝑦 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑦𝑥) → 𝑥𝐴)))
122121exp4a 632 . . . . . . . . . 10 (𝑦 ∈ ω → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑥𝐴𝑥 ≠ ∅) → (𝑦𝑥 𝑥𝐴))))
123122com24 95 . . . . . . . . 9 (𝑦 ∈ ω → (𝑦𝑥 → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
1242, 123syl5 34 . . . . . . . 8 (𝑦 ∈ ω → (𝑥𝑦 → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴))))
125124rexlimiv 3021 . . . . . . 7 (∃𝑦 ∈ ω 𝑥𝑦 → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴)))
1261, 125sylbi 207 . . . . . 6 (𝑥 ∈ Fin → ((𝑥𝐴𝑥 ≠ ∅) → (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 𝑥𝐴)))
127126com13 88 . . . . 5 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ((𝑥𝐴𝑥 ≠ ∅) → (𝑥 ∈ Fin → 𝑥𝐴)))
128127impd 447 . . . 4 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
129128alrimiv 1852 . . 3 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 → ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
130 zfpair2 4873 . . . . . 6 {𝑧, 𝑤} ∈ V
131 sseq1 3610 . . . . . . . . 9 (𝑥 = {𝑧, 𝑤} → (𝑥𝐴 ↔ {𝑧, 𝑤} ⊆ 𝐴))
132 neeq1 2852 . . . . . . . . 9 (𝑥 = {𝑧, 𝑤} → (𝑥 ≠ ∅ ↔ {𝑧, 𝑤} ≠ ∅))
133131, 132anbi12d 746 . . . . . . . 8 (𝑥 = {𝑧, 𝑤} → ((𝑥𝐴𝑥 ≠ ∅) ↔ ({𝑧, 𝑤} ⊆ 𝐴 ∧ {𝑧, 𝑤} ≠ ∅)))
134 eleq1 2686 . . . . . . . 8 (𝑥 = {𝑧, 𝑤} → (𝑥 ∈ Fin ↔ {𝑧, 𝑤} ∈ Fin))
135133, 134anbi12d 746 . . . . . . 7 (𝑥 = {𝑧, 𝑤} → (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) ↔ (({𝑧, 𝑤} ⊆ 𝐴 ∧ {𝑧, 𝑤} ≠ ∅) ∧ {𝑧, 𝑤} ∈ Fin)))
136 inteq 4448 . . . . . . . 8 (𝑥 = {𝑧, 𝑤} → 𝑥 = {𝑧, 𝑤})
137136eleq1d 2683 . . . . . . 7 (𝑥 = {𝑧, 𝑤} → ( 𝑥𝐴 {𝑧, 𝑤} ∈ 𝐴))
138135, 137imbi12d 334 . . . . . 6 (𝑥 = {𝑧, 𝑤} → ((((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴) ↔ ((({𝑧, 𝑤} ⊆ 𝐴 ∧ {𝑧, 𝑤} ≠ ∅) ∧ {𝑧, 𝑤} ∈ Fin) → {𝑧, 𝑤} ∈ 𝐴)))
139130, 138spcv 3288 . . . . 5 (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴) → ((({𝑧, 𝑤} ⊆ 𝐴 ∧ {𝑧, 𝑤} ≠ ∅) ∧ {𝑧, 𝑤} ∈ Fin) → {𝑧, 𝑤} ∈ 𝐴))
140 vex 3192 . . . . . . 7 𝑧 ∈ V
141 vex 3192 . . . . . . 7 𝑤 ∈ V
142140, 141prss 4324 . . . . . 6 ((𝑧𝐴𝑤𝐴) ↔ {𝑧, 𝑤} ⊆ 𝐴)
143140prnz 4285 . . . . . . 7 {𝑧, 𝑤} ≠ ∅
144143biantru 526 . . . . . 6 ({𝑧, 𝑤} ⊆ 𝐴 ↔ ({𝑧, 𝑤} ⊆ 𝐴 ∧ {𝑧, 𝑤} ≠ ∅))
145 prfi 8187 . . . . . . 7 {𝑧, 𝑤} ∈ Fin
146145biantru 526 . . . . . 6 (({𝑧, 𝑤} ⊆ 𝐴 ∧ {𝑧, 𝑤} ≠ ∅) ↔ (({𝑧, 𝑤} ⊆ 𝐴 ∧ {𝑧, 𝑤} ≠ ∅) ∧ {𝑧, 𝑤} ∈ Fin))
147142, 144, 1463bitrri 287 . . . . 5 ((({𝑧, 𝑤} ⊆ 𝐴 ∧ {𝑧, 𝑤} ≠ ∅) ∧ {𝑧, 𝑤} ∈ Fin) ↔ (𝑧𝐴𝑤𝐴))
148140, 141intpr 4480 . . . . . 6 {𝑧, 𝑤} = (𝑧𝑤)
149148eleq1i 2689 . . . . 5 ( {𝑧, 𝑤} ∈ 𝐴 ↔ (𝑧𝑤) ∈ 𝐴)
150139, 147, 1493imtr3g 284 . . . 4 (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴) → ((𝑧𝐴𝑤𝐴) → (𝑧𝑤) ∈ 𝐴))
151150ralrimivv 2965 . . 3 (∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴) → ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)
152129, 151impbii 199 . 2 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴 ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
153 ineq1 3790 . . . 4 (𝑥 = 𝑧 → (𝑥𝑦) = (𝑧𝑦))
154153eleq1d 2683 . . 3 (𝑥 = 𝑧 → ((𝑥𝑦) ∈ 𝐴 ↔ (𝑧𝑦) ∈ 𝐴))
155 ineq2 3791 . . . 4 (𝑦 = 𝑤 → (𝑧𝑦) = (𝑧𝑤))
156155eleq1d 2683 . . 3 (𝑦 = 𝑤 → ((𝑧𝑦) ∈ 𝐴 ↔ (𝑧𝑤) ∈ 𝐴))
157154, 156cbvral2v 3170 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤) ∈ 𝐴)
158 df-3an 1038 . . . 4 ((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin))
159158imbi1i 339 . . 3 (((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴) ↔ (((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
160159albii 1744 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴) ↔ ∀𝑥(((𝑥𝐴𝑥 ≠ ∅) ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
161152, 157, 1603bitr4i 292 1 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036  wal 1478   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  wrex 2908  Vcvv 3189  cun 3557  cin 3558  wss 3559  c0 3896  {csn 4153  {cpr 4155   cint 4445   class class class wbr 4618  ccnv 5078  ran crn 5080  cima 5082  suc csuc 5689  Fun wfun 5846   Fn wfn 5847  wf 5848  1-1wf1 5849  ontowfo 5850  1-1-ontowf1o 5851  cfv 5852  ωcom 7019  cen 7904  Fincfn 7907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-fin 7911
This theorem is referenced by:  dffi2  8281  istop2g  20633  neificl  33216
  Copyright terms: Public domain W3C validator