MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filfi Structured version   Visualization version   GIF version

Theorem filfi 22470
Description: A filter is closed under taking intersections. (Contributed by Mario Carneiro, 27-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filfi (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)

Proof of Theorem filfi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filin 22465 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ 𝐹)
213expib 1118 . . 3 (𝐹 ∈ (Fil‘𝑋) → ((𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ 𝐹))
32ralrimivv 3193 . 2 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹)
4 inficl 8892 . 2 (𝐹 ∈ (Fil‘𝑋) → (∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹 ↔ (fi‘𝐹) = 𝐹))
53, 4mpbid 234 1 (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  wral 3141  cin 3938  cfv 6358  ficfi 8877  Filcfil 22456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-fin 8516  df-fi 8878  df-fbas 20545  df-fil 22457
This theorem is referenced by:  filintn0  22472  fclscmpi  22640  alexsublem  22655  iscmet3  23899
  Copyright terms: Public domain W3C validator