Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnet Structured version   Visualization version   GIF version

Theorem filnet 33725
Description: A filter has the same convergence and clustering properties as some net. (Contributed by Jeff Hankins, 12-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Assertion
Ref Expression
filnet (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑))))
Distinct variable groups:   𝑓,𝑑,𝐹   𝑋,𝑑,𝑓

Proof of Theorem filnet
Dummy variables 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . 2 𝑛𝐹 ({𝑛} × 𝑛) = 𝑛𝐹 ({𝑛} × 𝑛)
2 eqid 2821 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 𝑛𝐹 ({𝑛} × 𝑛) ∧ 𝑦 𝑛𝐹 ({𝑛} × 𝑛)) ∧ (1st𝑦) ⊆ (1st𝑥))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 𝑛𝐹 ({𝑛} × 𝑛) ∧ 𝑦 𝑛𝐹 ({𝑛} × 𝑛)) ∧ (1st𝑦) ⊆ (1st𝑥))}
31, 2filnetlem4 33724 1 (𝐹 ∈ (Fil‘𝑋) → ∃𝑑 ∈ DirRel ∃𝑓(𝑓:dom 𝑑𝑋𝐹 = ((𝑋 FilMap 𝑓)‘ran (tail‘𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wex 1776  wcel 2110  wrex 3139  wss 3936  {csn 4561   ciun 4912  {copab 5121   × cxp 5548  dom cdm 5550  ran crn 5551  wf 6346  cfv 6350  (class class class)co 7150  1st c1st 7681  DirRelcdir 17832  tailctail 17833  Filcfil 22447   FilMap cfm 22535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-dir 17834  df-tail 17835  df-fbas 20536  df-fg 20537  df-fil 22448  df-fm 22540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator