Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnetlem3 Structured version   Visualization version   GIF version

Theorem filnetlem3 32017
Description: Lemma for filnet 32019. (Contributed by Jeff Hankins, 13-Dec-2009.) (Revised by Mario Carneiro, 8-Aug-2015.)
Hypotheses
Ref Expression
filnet.h 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
filnet.d 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
Assertion
Ref Expression
filnetlem3 (𝐻 = 𝐷 ∧ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel)))
Distinct variable groups:   𝑥,𝑦,𝑛,𝐹   𝑥,𝐻,𝑦   𝑛,𝑋
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑛)   𝐻(𝑛)   𝑋(𝑥,𝑦)

Proof of Theorem filnetlem3
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmresi 5416 . . . . . 6 dom ( I ↾ 𝐻) = 𝐻
2 filnet.h . . . . . . . . 9 𝐻 = 𝑛𝐹 ({𝑛} × 𝑛)
3 filnet.d . . . . . . . . 9 𝐷 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ (1st𝑦) ⊆ (1st𝑥))}
42, 3filnetlem2 32016 . . . . . . . 8 (( I ↾ 𝐻) ⊆ 𝐷𝐷 ⊆ (𝐻 × 𝐻))
54simpli 474 . . . . . . 7 ( I ↾ 𝐻) ⊆ 𝐷
6 dmss 5283 . . . . . . 7 (( I ↾ 𝐻) ⊆ 𝐷 → dom ( I ↾ 𝐻) ⊆ dom 𝐷)
75, 6ax-mp 5 . . . . . 6 dom ( I ↾ 𝐻) ⊆ dom 𝐷
81, 7eqsstr3i 3615 . . . . 5 𝐻 ⊆ dom 𝐷
9 ssun1 3754 . . . . 5 dom 𝐷 ⊆ (dom 𝐷 ∪ ran 𝐷)
108, 9sstri 3592 . . . 4 𝐻 ⊆ (dom 𝐷 ∪ ran 𝐷)
11 dmrnssfld 5344 . . . 4 (dom 𝐷 ∪ ran 𝐷) ⊆ 𝐷
1210, 11sstri 3592 . . 3 𝐻 𝐷
134simpri 478 . . . . 5 𝐷 ⊆ (𝐻 × 𝐻)
14 uniss 4424 . . . . 5 (𝐷 ⊆ (𝐻 × 𝐻) → 𝐷 (𝐻 × 𝐻))
15 uniss 4424 . . . . 5 ( 𝐷 (𝐻 × 𝐻) → 𝐷 (𝐻 × 𝐻))
1613, 14, 15mp2b 10 . . . 4 𝐷 (𝐻 × 𝐻)
17 unixpss 5195 . . . . 5 (𝐻 × 𝐻) ⊆ (𝐻𝐻)
18 unidm 3734 . . . . 5 (𝐻𝐻) = 𝐻
1917, 18sseqtri 3616 . . . 4 (𝐻 × 𝐻) ⊆ 𝐻
2016, 19sstri 3592 . . 3 𝐷𝐻
2112, 20eqssi 3599 . 2 𝐻 = 𝐷
22 filelss 21566 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛𝐹) → 𝑛𝑋)
23 xpss2 5190 . . . . . . . 8 (𝑛𝑋 → ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋))
2422, 23syl 17 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑛𝐹) → ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋))
2524ralrimiva 2960 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → ∀𝑛𝐹 ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋))
26 ss2iun 4502 . . . . . 6 (∀𝑛𝐹 ({𝑛} × 𝑛) ⊆ ({𝑛} × 𝑋) → 𝑛𝐹 ({𝑛} × 𝑛) ⊆ 𝑛𝐹 ({𝑛} × 𝑋))
2725, 26syl 17 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝑛𝐹 ({𝑛} × 𝑛) ⊆ 𝑛𝐹 ({𝑛} × 𝑋))
28 iunxpconst 5136 . . . . 5 𝑛𝐹 ({𝑛} × 𝑋) = (𝐹 × 𝑋)
2927, 28syl6sseq 3630 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝑛𝐹 ({𝑛} × 𝑛) ⊆ (𝐹 × 𝑋))
302, 29syl5eqss 3628 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐻 ⊆ (𝐹 × 𝑋))
315a1i 11 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ( I ↾ 𝐻) ⊆ 𝐷)
323relopabi 5205 . . . . 5 Rel 𝐷
3331, 32jctil 559 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷))
34 simpl 473 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝐹 ∈ (Fil‘𝑋))
3530adantr 481 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝐻 ⊆ (𝐹 × 𝑋))
36 simprl 793 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑣𝐻)
3735, 36sseldd 3584 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑣 ∈ (𝐹 × 𝑋))
38 xp1st 7143 . . . . . . . . . . 11 (𝑣 ∈ (𝐹 × 𝑋) → (1st𝑣) ∈ 𝐹)
3937, 38syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → (1st𝑣) ∈ 𝐹)
40 simprr 795 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑧𝐻)
4135, 40sseldd 3584 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → 𝑧 ∈ (𝐹 × 𝑋))
42 xp1st 7143 . . . . . . . . . . 11 (𝑧 ∈ (𝐹 × 𝑋) → (1st𝑧) ∈ 𝐹)
4341, 42syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → (1st𝑧) ∈ 𝐹)
44 filinn0 21574 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (1st𝑣) ∈ 𝐹 ∧ (1st𝑧) ∈ 𝐹) → ((1st𝑣) ∩ (1st𝑧)) ≠ ∅)
4534, 39, 43, 44syl3anc 1323 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ((1st𝑣) ∩ (1st𝑧)) ≠ ∅)
46 n0 3907 . . . . . . . . 9 (((1st𝑣) ∩ (1st𝑧)) ≠ ∅ ↔ ∃𝑢 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧)))
4745, 46sylib 208 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ∃𝑢 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧)))
4836adantr 481 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑣𝐻)
49 filin 21568 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Fil‘𝑋) ∧ (1st𝑣) ∈ 𝐹 ∧ (1st𝑧) ∈ 𝐹) → ((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹)
5034, 39, 43, 49syl3anc 1323 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹)
5150adantr 481 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹)
52 simpr 477 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧)))
53 id 22 . . . . . . . . . . . . 13 (𝑛 = ((1st𝑣) ∩ (1st𝑧)) → 𝑛 = ((1st𝑣) ∩ (1st𝑧)))
5453opeliunxp2 5220 . . . . . . . . . . . 12 (⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝑛𝐹 ({𝑛} × 𝑛) ↔ (((1st𝑣) ∩ (1st𝑧)) ∈ 𝐹𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))))
5551, 52, 54sylanbrc 697 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝑛𝐹 ({𝑛} × 𝑛))
5655, 2syl6eleqr 2709 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻)
57 fvex 6158 . . . . . . . . . . . . . 14 (1st𝑣) ∈ V
5857inex1 4759 . . . . . . . . . . . . 13 ((1st𝑣) ∩ (1st𝑧)) ∈ V
59 vex 3189 . . . . . . . . . . . . 13 𝑢 ∈ V
6058, 59op1st 7121 . . . . . . . . . . . 12 (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) = ((1st𝑣) ∩ (1st𝑧))
61 inss1 3811 . . . . . . . . . . . 12 ((1st𝑣) ∩ (1st𝑧)) ⊆ (1st𝑣)
6260, 61eqsstri 3614 . . . . . . . . . . 11 (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑣)
63 vex 3189 . . . . . . . . . . . 12 𝑣 ∈ V
64 opex 4893 . . . . . . . . . . . 12 ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ V
652, 3, 63, 64filnetlem1 32015 . . . . . . . . . . 11 (𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ ((𝑣𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻) ∧ (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑣)))
6662, 65mpbiran2 953 . . . . . . . . . 10 (𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ (𝑣𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻))
6748, 56, 66sylanbrc 697 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩)
6840adantr 481 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑧𝐻)
69 inss2 3812 . . . . . . . . . . . 12 ((1st𝑣) ∩ (1st𝑧)) ⊆ (1st𝑧)
7060, 69eqsstri 3614 . . . . . . . . . . 11 (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑧)
71 vex 3189 . . . . . . . . . . . 12 𝑧 ∈ V
722, 3, 71, 64filnetlem1 32015 . . . . . . . . . . 11 (𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ ((𝑧𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻) ∧ (1st ‘⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) ⊆ (1st𝑧)))
7370, 72mpbiran2 953 . . . . . . . . . 10 (𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ↔ (𝑧𝐻 ∧ ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∈ 𝐻))
7468, 56, 73sylanbrc 697 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → 𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩)
75 breq2 4617 . . . . . . . . . . 11 (𝑤 = ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ → (𝑣𝐷𝑤𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩))
76 breq2 4617 . . . . . . . . . . 11 (𝑤 = ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ → (𝑧𝐷𝑤𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩))
7775, 76anbi12d 746 . . . . . . . . . 10 (𝑤 = ⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ → ((𝑣𝐷𝑤𝑧𝐷𝑤) ↔ (𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∧ 𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩)))
7864, 77spcev 3286 . . . . . . . . 9 ((𝑣𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩ ∧ 𝑧𝐷⟨((1st𝑣) ∩ (1st𝑧)), 𝑢⟩) → ∃𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
7967, 74, 78syl2anc 692 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) ∧ 𝑢 ∈ ((1st𝑣) ∩ (1st𝑧))) → ∃𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
8047, 79exlimddv 1860 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑣𝐻𝑧𝐻)) → ∃𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
8180ralrimivva 2965 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → ∀𝑣𝐻𝑧𝐻𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
82 codir 5475 . . . . . 6 ((𝐻 × 𝐻) ⊆ (𝐷𝐷) ↔ ∀𝑣𝐻𝑧𝐻𝑤(𝑣𝐷𝑤𝑧𝐷𝑤))
8381, 82sylibr 224 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → (𝐻 × 𝐻) ⊆ (𝐷𝐷))
84 vex 3189 . . . . . . . . . . . . 13 𝑤 ∈ V
852, 3, 63, 84filnetlem1 32015 . . . . . . . . . . . 12 (𝑣𝐷𝑤 ↔ ((𝑣𝐻𝑤𝐻) ∧ (1st𝑤) ⊆ (1st𝑣)))
8685simplbi 476 . . . . . . . . . . 11 (𝑣𝐷𝑤 → (𝑣𝐻𝑤𝐻))
8786simpld 475 . . . . . . . . . 10 (𝑣𝐷𝑤𝑣𝐻)
882, 3, 84, 71filnetlem1 32015 . . . . . . . . . . . 12 (𝑤𝐷𝑧 ↔ ((𝑤𝐻𝑧𝐻) ∧ (1st𝑧) ⊆ (1st𝑤)))
8988simplbi 476 . . . . . . . . . . 11 (𝑤𝐷𝑧 → (𝑤𝐻𝑧𝐻))
9089simprd 479 . . . . . . . . . 10 (𝑤𝐷𝑧𝑧𝐻)
9187, 90anim12i 589 . . . . . . . . 9 ((𝑣𝐷𝑤𝑤𝐷𝑧) → (𝑣𝐻𝑧𝐻))
9288simprbi 480 . . . . . . . . . 10 (𝑤𝐷𝑧 → (1st𝑧) ⊆ (1st𝑤))
9385simprbi 480 . . . . . . . . . 10 (𝑣𝐷𝑤 → (1st𝑤) ⊆ (1st𝑣))
9492, 93sylan9ssr 3597 . . . . . . . . 9 ((𝑣𝐷𝑤𝑤𝐷𝑧) → (1st𝑧) ⊆ (1st𝑣))
952, 3, 63, 71filnetlem1 32015 . . . . . . . . 9 (𝑣𝐷𝑧 ↔ ((𝑣𝐻𝑧𝐻) ∧ (1st𝑧) ⊆ (1st𝑣)))
9691, 94, 95sylanbrc 697 . . . . . . . 8 ((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧)
9796ax-gen 1719 . . . . . . 7 𝑧((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧)
9897gen2 1720 . . . . . 6 𝑣𝑤𝑧((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧)
99 cotr 5467 . . . . . 6 ((𝐷𝐷) ⊆ 𝐷 ↔ ∀𝑣𝑤𝑧((𝑣𝐷𝑤𝑤𝐷𝑧) → 𝑣𝐷𝑧))
10098, 99mpbir 221 . . . . 5 (𝐷𝐷) ⊆ 𝐷
10183, 100jctil 559 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ((𝐷𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (𝐷𝐷)))
102 filtop 21569 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
103 xpexg 6913 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑋𝐹) → (𝐹 × 𝑋) ∈ V)
104102, 103mpdan 701 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝐹 × 𝑋) ∈ V)
105104, 30ssexd 4765 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝐻 ∈ V)
106 xpexg 6913 . . . . . . 7 ((𝐻 ∈ V ∧ 𝐻 ∈ V) → (𝐻 × 𝐻) ∈ V)
107105, 105, 106syl2anc 692 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝐻 × 𝐻) ∈ V)
108 ssexg 4764 . . . . . 6 ((𝐷 ⊆ (𝐻 × 𝐻) ∧ (𝐻 × 𝐻) ∈ V) → 𝐷 ∈ V)
10913, 107, 108sylancr 694 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐷 ∈ V)
11021isdir 17153 . . . . 5 (𝐷 ∈ V → (𝐷 ∈ DirRel ↔ ((Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷) ∧ ((𝐷𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (𝐷𝐷)))))
111109, 110syl 17 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝐷 ∈ DirRel ↔ ((Rel 𝐷 ∧ ( I ↾ 𝐻) ⊆ 𝐷) ∧ ((𝐷𝐷) ⊆ 𝐷 ∧ (𝐻 × 𝐻) ⊆ (𝐷𝐷)))))
11233, 101, 111mpbir2and 956 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐷 ∈ DirRel)
11330, 112jca 554 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel))
11421, 113pm3.2i 471 1 (𝐻 = 𝐷 ∧ (𝐹 ∈ (Fil‘𝑋) → (𝐻 ⊆ (𝐹 × 𝑋) ∧ 𝐷 ∈ DirRel)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1478   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  Vcvv 3186  cun 3553  cin 3554  wss 3555  c0 3891  {csn 4148  cop 4154   cuni 4402   ciun 4485   class class class wbr 4613  {copab 4672   I cid 4984   × cxp 5072  ccnv 5073  dom cdm 5074  ran crn 5075  cres 5076  ccom 5078  Rel wrel 5079  cfv 5847  1st c1st 7111  DirRelcdir 17149  Filcfil 21559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-1st 7113  df-dir 17151  df-fbas 19662  df-fil 21560
This theorem is referenced by:  filnetlem4  32018
  Copyright terms: Public domain W3C validator