MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filssufil Structured version   Visualization version   GIF version

Theorem filssufil 21917
Description: A filter is contained in some ultrafilter. (Requires the Axiom of Choice, via numth3 9484.) (Contributed by Jeff Hankins, 2-Dec-2009.) (Revised by Stefan O'Rear, 29-Jul-2015.)
Assertion
Ref Expression
filssufil (𝐹 ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Distinct variable groups:   𝑓,𝐹   𝑓,𝑋

Proof of Theorem filssufil
StepHypRef Expression
1 filtop 21860 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
2 pwexg 4999 . . 3 (𝑋𝐹 → 𝒫 𝑋 ∈ V)
3 pwexg 4999 . . 3 (𝒫 𝑋 ∈ V → 𝒫 𝒫 𝑋 ∈ V)
4 numth3 9484 . . 3 (𝒫 𝒫 𝑋 ∈ V → 𝒫 𝒫 𝑋 ∈ dom card)
51, 2, 3, 44syl 19 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝒫 𝒫 𝑋 ∈ dom card)
6 filssufilg 21916 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
75, 6mpdan 705 1 (𝐹 ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2139  wrex 3051  Vcvv 3340  wss 3715  𝒫 cpw 4302  dom cdm 5266  cfv 6049  cardccrd 8951  Filcfil 21850  UFilcufil 21904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-ac2 9477
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-rpss 7102  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-fin 8125  df-fi 8482  df-card 8955  df-ac 9129  df-cda 9182  df-fbas 19945  df-fg 19946  df-fil 21851  df-ufil 21906
This theorem is referenced by:  ufileu  21924  filufint  21925  ufinffr  21934  ufilen  21935
  Copyright terms: Public domain W3C validator