MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filtop Structured version   Visualization version   GIF version

Theorem filtop 21653
Description: The underlying set belongs to the filter. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filtop (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)

Proof of Theorem filtop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 filfbas 21646 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbasne0 21628 . . 3 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅)
31, 2syl 17 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
4 n0 3929 . . 3 (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥𝐹)
5 filelss 21650 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑥𝑋)
6 ssid 3622 . . . . . . 7 𝑋𝑋
7 filss 21651 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑋𝑋𝑥𝑋)) → 𝑋𝐹)
873exp2 1284 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑋𝑋 → (𝑥𝑋𝑋𝐹))))
98imp 445 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → (𝑋𝑋 → (𝑥𝑋𝑋𝐹)))
106, 9mpi 20 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → (𝑥𝑋𝑋𝐹))
115, 10mpd 15 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑋𝐹)
1211ex 450 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹𝑋𝐹))
1312exlimdv 1860 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∃𝑥 𝑥𝐹𝑋𝐹))
144, 13syl5bi 232 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ≠ ∅ → 𝑋𝐹))
153, 14mpd 15 1 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wex 1703  wcel 1989  wne 2793  wss 3572  c0 3913  cfv 5886  fBascfbas 19728  Filcfil 21643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fv 5894  df-fbas 19737  df-fil 21644
This theorem is referenced by:  isfil2  21654  filn0  21660  infil  21661  filunibas  21679  filuni  21683  trfil1  21684  trfil2  21685  fgtr  21688  trfg  21689  isufil2  21706  filssufil  21710  ssufl  21716  ufileu  21717  filufint  21718  uffixfr  21721  cfinufil  21726  rnelfmlem  21750  rnelfm  21751  fmfnfmlem1  21752  fmfnfmlem2  21753  fmfnfmlem4  21755  fmfnfm  21756  flfval  21788  fclsfnflim  21825  flimfnfcls  21826  fcfval  21831  alexsublem  21842  metust  22357  cmetss  23107  minveclem4a  23195  filnetlem3  32359  filnetlem4  32360
  Copyright terms: Public domain W3C validator