![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > filunibas | Structured version Visualization version GIF version |
Description: Recover the base set from a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
filunibas | ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filsspw 21702 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋) | |
2 | sspwuni 4643 | . . 3 ⊢ (𝐹 ⊆ 𝒫 𝑋 ↔ ∪ 𝐹 ⊆ 𝑋) | |
3 | 1, 2 | sylib 208 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 ⊆ 𝑋) |
4 | filtop 21706 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) | |
5 | unissel 4500 | . 2 ⊢ ((∪ 𝐹 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐹) → ∪ 𝐹 = 𝑋) | |
6 | 3, 4, 5 | syl2anc 694 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 𝒫 cpw 4191 ∪ cuni 4468 ‘cfv 5926 Filcfil 21696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fv 5934 df-fbas 19791 df-fil 21697 |
This theorem is referenced by: filunirn 21733 filconn 21734 uffixfr 21774 uffix2 21775 uffixsn 21776 ufildr 21782 flimtopon 21821 flimss1 21824 flffval 21840 fclsval 21859 isfcls 21860 fclstopon 21863 fclsfnflim 21878 fcfval 21884 |
Copyright terms: Public domain | W3C validator |