MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimact Structured version   Visualization version   GIF version

Theorem fimact 9317
Description: The image by a function of a countable set is countable. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Assertion
Ref Expression
fimact ((𝐴 ≼ ω ∧ Fun 𝐹) → (𝐹𝐴) ≼ ω)

Proof of Theorem fimact
StepHypRef Expression
1 ctex 7930 . . 3 (𝐴 ≼ ω → 𝐴 ∈ V)
2 imadomg 9316 . . . 4 (𝐴 ∈ V → (Fun 𝐹 → (𝐹𝐴) ≼ 𝐴))
32imp 445 . . 3 ((𝐴 ∈ V ∧ Fun 𝐹) → (𝐹𝐴) ≼ 𝐴)
41, 3sylan 488 . 2 ((𝐴 ≼ ω ∧ Fun 𝐹) → (𝐹𝐴) ≼ 𝐴)
5 simpl 473 . 2 ((𝐴 ≼ ω ∧ Fun 𝐹) → 𝐴 ≼ ω)
6 domtr 7969 . 2 (((𝐹𝐴) ≼ 𝐴𝐴 ≼ ω) → (𝐹𝐴) ≼ ω)
74, 5, 6syl2anc 692 1 ((𝐴 ≼ ω ∧ Fun 𝐹) → (𝐹𝐴) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1987  Vcvv 3190   class class class wbr 4623  cima 5087  Fun wfun 5851  ωcom 7027  cdom 7913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-ac2 9245
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-card 8725  df-acn 8728  df-ac 8899
This theorem is referenced by:  smfpimbor1lem1  40342
  Copyright terms: Public domain W3C validator