![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimaxg | Structured version Visualization version GIF version |
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
fimaxg | ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fimax2g 8363 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) | |
2 | df-ne 2925 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
3 | 2 | imbi1i 338 | . . . . . . . 8 ⊢ ((𝑥 ≠ 𝑦 → 𝑦𝑅𝑥) ↔ (¬ 𝑥 = 𝑦 → 𝑦𝑅𝑥)) |
4 | pm4.64 386 | . . . . . . . 8 ⊢ ((¬ 𝑥 = 𝑦 → 𝑦𝑅𝑥) ↔ (𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) | |
5 | 3, 4 | bitri 264 | . . . . . . 7 ⊢ ((𝑥 ≠ 𝑦 → 𝑦𝑅𝑥) ↔ (𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
6 | sotric 5205 | . . . . . . . 8 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
7 | 6 | con2bid 343 | . . . . . . 7 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) ↔ ¬ 𝑥𝑅𝑦)) |
8 | 5, 7 | syl5bb 272 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ≠ 𝑦 → 𝑦𝑅𝑥) ↔ ¬ 𝑥𝑅𝑦)) |
9 | 8 | anassrs 683 | . . . . 5 ⊢ (((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≠ 𝑦 → 𝑦𝑅𝑥) ↔ ¬ 𝑥𝑅𝑦)) |
10 | 9 | ralbidva 3115 | . . . 4 ⊢ ((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦𝑅𝑥) ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦)) |
11 | 10 | rexbidva 3179 | . . 3 ⊢ (𝑅 Or 𝐴 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦𝑅𝑥) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦)) |
12 | 11 | 3ad2ant1 1127 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦𝑅𝑥) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦)) |
13 | 1, 12 | mpbird 247 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦𝑅𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2131 ≠ wne 2924 ∀wral 3042 ∃wrex 3043 ∅c0 4050 class class class wbr 4796 Or wor 5178 Fincfn 8113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-om 7223 df-1o 7721 df-er 7903 df-en 8114 df-fin 8117 |
This theorem is referenced by: fisupg 8365 fimaxre 11152 |
Copyright terms: Public domain | W3C validator |