MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre3 Structured version   Visualization version   GIF version

Theorem fimaxre3 11008
Description: A nonempty finite set of real numbers has a maximum (image set version). (Contributed by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre3 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem fimaxre3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.29 3101 . . . . . 6 ((∀𝑦𝐴 𝐵 ∈ ℝ ∧ ∃𝑦𝐴 𝑧 = 𝐵) → ∃𝑦𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵))
2 eleq1 2718 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧 ∈ ℝ ↔ 𝐵 ∈ ℝ))
32biimparc 503 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ)
43rexlimivw 3058 . . . . . 6 (∃𝑦𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ)
51, 4syl 17 . . . . 5 ((∀𝑦𝐴 𝐵 ∈ ℝ ∧ ∃𝑦𝐴 𝑧 = 𝐵) → 𝑧 ∈ ℝ)
65ex 449 . . . 4 (∀𝑦𝐴 𝐵 ∈ ℝ → (∃𝑦𝐴 𝑧 = 𝐵𝑧 ∈ ℝ))
76abssdv 3709 . . 3 (∀𝑦𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ⊆ ℝ)
8 abrexfi 8307 . . 3 (𝐴 ∈ Fin → {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ∈ Fin)
9 fimaxre2 11007 . . 3 (({𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥)
107, 8, 9syl2anr 494 . 2 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥)
11 r19.23v 3052 . . . . . . 7 (∀𝑦𝐴 (𝑤 = 𝐵𝑤𝑥) ↔ (∃𝑦𝐴 𝑤 = 𝐵𝑤𝑥))
1211albii 1787 . . . . . 6 (∀𝑤𝑦𝐴 (𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑤(∃𝑦𝐴 𝑤 = 𝐵𝑤𝑥))
13 ralcom4 3255 . . . . . 6 (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑤𝑦𝐴 (𝑤 = 𝐵𝑤𝑥))
14 eqeq1 2655 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧 = 𝐵𝑤 = 𝐵))
1514rexbidv 3081 . . . . . . 7 (𝑧 = 𝑤 → (∃𝑦𝐴 𝑧 = 𝐵 ↔ ∃𝑦𝐴 𝑤 = 𝐵))
1615ralab 3400 . . . . . 6 (∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∀𝑤(∃𝑦𝐴 𝑤 = 𝐵𝑤𝑥))
1712, 13, 163bitr4i 292 . . . . 5 (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥)
18 nfv 1883 . . . . . . . 8 𝑤 𝐵𝑥
19 breq1 4688 . . . . . . . 8 (𝑤 = 𝐵 → (𝑤𝑥𝐵𝑥))
2018, 19ceqsalg 3261 . . . . . . 7 (𝐵 ∈ ℝ → (∀𝑤(𝑤 = 𝐵𝑤𝑥) ↔ 𝐵𝑥))
2120ralimi 2981 . . . . . 6 (∀𝑦𝐴 𝐵 ∈ ℝ → ∀𝑦𝐴 (∀𝑤(𝑤 = 𝐵𝑤𝑥) ↔ 𝐵𝑥))
22 ralbi 3097 . . . . . 6 (∀𝑦𝐴 (∀𝑤(𝑤 = 𝐵𝑤𝑥) ↔ 𝐵𝑥) → (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑦𝐴 𝐵𝑥))
2321, 22syl 17 . . . . 5 (∀𝑦𝐴 𝐵 ∈ ℝ → (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑦𝐴 𝐵𝑥))
2417, 23syl5bbr 274 . . . 4 (∀𝑦𝐴 𝐵 ∈ ℝ → (∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∀𝑦𝐴 𝐵𝑥))
2524rexbidv 3081 . . 3 (∀𝑦𝐴 𝐵 ∈ ℝ → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥))
2625adantl 481 . 2 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥))
2710, 26mpbid 222 1 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1521   = wceq 1523  wcel 2030  {cab 2637  wral 2941  wrex 2942  wss 3607   class class class wbr 4685  Fincfn 7997  cr 9973  cle 10113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-i2m1 10042  ax-1ne0 10043  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118
This theorem is referenced by:  fsequb  12814  fsequb2  12815  caubnd  14142  limsupgre  14256  vdwnnlem3  15748  cnheibor  22801  bndth  22804  ovoliunlem2  23317  dchrisum  25226  ssfiunibd  39837  fimaxre4  39938  uzublem  39970  fourierdlem70  40711  fourierdlem71  40712  fourierdlem80  40721
  Copyright terms: Public domain W3C validator