MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2s Structured version   Visualization version   GIF version

Theorem fin1a2s 9188
Description: An II-infinite set can have an I-infinite part broken off and remain II-infinite. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2s ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinII)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉

Proof of Theorem fin1a2s
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4145 . . . 4 (𝑐 ∈ 𝒫 𝒫 𝐴𝑐 ⊆ 𝒫 𝐴)
2 fin12 9187 . . . . . . . . . . 11 (𝑥 ∈ Fin → 𝑥 ∈ FinII)
3 fin23 9163 . . . . . . . . . . 11 (𝑥 ∈ FinII𝑥 ∈ FinIII)
42, 3syl 17 . . . . . . . . . 10 (𝑥 ∈ Fin → 𝑥 ∈ FinIII)
5 fin23 9163 . . . . . . . . . 10 ((𝐴𝑥) ∈ FinII → (𝐴𝑥) ∈ FinIII)
64, 5orim12i 538 . . . . . . . . 9 ((𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → (𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII))
76ralimi 2947 . . . . . . . 8 (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII))
8 fin1a2lem8 9181 . . . . . . . 8 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII)) → 𝐴 ∈ FinIII)
97, 8sylan2 491 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinIII)
109adantr 481 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → 𝐴 ∈ FinIII)
11 simplrl 799 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → 𝑐 ⊆ 𝒫 𝐴)
12 simprrr 804 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → [] Or 𝑐)
1312adantr 481 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → [] Or 𝑐)
14 simprl 793 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → ¬ 𝑐𝑐)
15 simplrl 799 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → 𝑐 ⊆ 𝒫 𝐴)
16 ssralv 3650 . . . . . . . . . . . . . 14 (𝑐 ⊆ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)))
18 idd 24 . . . . . . . . . . . . . . 15 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → (𝑥 ∈ Fin → 𝑥 ∈ Fin))
19 fin1a2lem13 9186 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐 ∧ ¬ 𝑐𝑐) ∧ (¬ 𝑥 ∈ Fin ∧ 𝑥𝑐)) → ¬ (𝐴𝑥) ∈ FinII)
2019ex 450 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐 ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
21203expa 1262 . . . . . . . . . . . . . . . . . . . . 21 (((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐) ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
2221adantlrl 755 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐)) ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
2322adantll 749 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
2423imp 445 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ (¬ 𝑥 ∈ Fin ∧ 𝑥𝑐)) → ¬ (𝐴𝑥) ∈ FinII)
2524ancom2s 843 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ (𝑥𝑐 ∧ ¬ 𝑥 ∈ Fin)) → ¬ (𝐴𝑥) ∈ FinII)
2625expr 642 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → (¬ 𝑥 ∈ Fin → ¬ (𝐴𝑥) ∈ FinII))
2726con4d 114 . . . . . . . . . . . . . . 15 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → ((𝐴𝑥) ∈ FinII𝑥 ∈ Fin))
2818, 27jaod 395 . . . . . . . . . . . . . 14 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → ((𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → 𝑥 ∈ Fin))
2928ralimdva 2957 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥𝑐 (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 𝑥 ∈ Fin))
3017, 29syld 47 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 𝑥 ∈ Fin))
3130impr 648 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → ∀𝑥𝑐 𝑥 ∈ Fin)
32 dfss3 3577 . . . . . . . . . . 11 (𝑐 ⊆ Fin ↔ ∀𝑥𝑐 𝑥 ∈ Fin)
3331, 32sylibr 224 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → 𝑐 ⊆ Fin)
34 simprrl 803 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → 𝑐 ≠ ∅)
3534adantr 481 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → 𝑐 ≠ ∅)
36 fin1a2lem12 9185 . . . . . . . . . 10 (((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐 ∧ ¬ 𝑐𝑐) ∧ (𝑐 ⊆ Fin ∧ 𝑐 ≠ ∅)) → ¬ 𝐴 ∈ FinIII)
3711, 13, 14, 33, 35, 36syl32anc 1331 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → ¬ 𝐴 ∈ FinIII)
3837expr 642 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ¬ 𝐴 ∈ FinIII))
3938impancom 456 . . . . . . 7 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (¬ 𝑐𝑐 → ¬ 𝐴 ∈ FinIII))
4039an32s 845 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → (¬ 𝑐𝑐 → ¬ 𝐴 ∈ FinIII))
4110, 40mt4d 152 . . . . 5 (((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → 𝑐𝑐)
4241exp32 630 . . . 4 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (𝑐 ⊆ 𝒫 𝐴 → ((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
431, 42syl5 34 . . 3 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (𝑐 ∈ 𝒫 𝒫 𝐴 → ((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
4443ralrimiv 2960 . 2 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → ∀𝑐 ∈ 𝒫 𝒫 𝐴((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐))
45 isfin2 9068 . . 3 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑐 ∈ 𝒫 𝒫 𝐴((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
4645adantr 481 . 2 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (𝐴 ∈ FinII ↔ ∀𝑐 ∈ 𝒫 𝒫 𝐴((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
4744, 46mpbird 247 1 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036  wcel 1987  wne 2790  wral 2907  cdif 3556  wss 3559  c0 3896  𝒫 cpw 4135   cuni 4407   Or wor 4999   [] crpss 6896  Fincfn 7907  FinIIcfin2 9053  FinIIIcfin3 9055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-rpss 6897  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-seqom 7495  df-1o 7512  df-2o 7513  df-oadd 7516  df-omul 7517  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-wdom 8416  df-card 8717  df-fin2 9060  df-fin4 9061  df-fin3 9062
This theorem is referenced by:  fin1a2  9189
  Copyright terms: Public domain W3C validator