MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23 Structured version   Visualization version   GIF version

Theorem fin23 9155
Description: Every II-finite set (every chain of subsets has a maximal element) is III-finite (has no denumerable collection of subsets). The proof here is the only one I could find, from p.94 (writeup by Tarski, credited to Kuratowski). Translated into English and modern notation, the proof proceeds as follows (variables renamed for uniqueness):

Suppose for a contradiction that 𝐴 is a set which is II-finite but not III-finite.

For any countable sequence of distinct subsets 𝑇 of 𝐴, we can form a decreasing sequence of nonempty subsets (𝑈𝑇) by taking finite intersections of initial segments of 𝑇 while skipping over any element of 𝑇 which would cause the intersection to be empty.

By II-finiteness (as fin2i2 9084) this sequence contains its intersection, call it 𝑌; since by induction every subset in the sequence 𝑈 is nonempty, the intersection must be nonempty.

Suppose that an element 𝑋 of 𝑇 has nonempty intersection with 𝑌. Thus, said element has a nonempty intersection with the corresponding element of 𝑈, therefore it was used in the construction of 𝑈 and all further elements of 𝑈 are subsets of 𝑋, thus 𝑋 contains the 𝑌. That is, all elements of 𝑋 either contain 𝑌 or are disjoint from it.

Since there are only two cases, there must exist an infinite subset of 𝑇 which uniformly either contain 𝑌 or are disjoint from it. In the former case we can create an infinite set by subtracting 𝑌 from each element. In either case, call the result 𝑍; this is an infinite set of subsets of 𝐴, each of which is disjoint from 𝑌 and contained in the union of 𝑇; the union of 𝑍 is strictly contained in the union of 𝑇, because only the latter is a superset of the nonempty set 𝑌.

The preceding four steps may be iterated a countable number of times starting from the assumed denumerable set of subsets to produce a denumerable sequence 𝐵 of the 𝑇 sets from each stage. Great caution is required to avoid ax-dc 9212 here; in particular an effective version of the pigeonhole principle (for aleph-null pigeons and 2 holes) is required. Since a denumerable set of subsets is assumed to exist, we can conclude ω ∈ V without the axiom.

This 𝐵 sequence is strictly decreasing, thus it has no minimum, contradicting the first assumption. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)

Ref Expression
fin23 (𝐴 ∈ FinII𝐴 ∈ FinIII)

Proof of Theorem fin23
Dummy variables 𝑎 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isf33lem 9132 . 2 FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
21fin23lem40 9117 1 (𝐴 ∈ FinII𝐴 ∈ FinIII)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987  FinIIcfin2 9045  FinIIIcfin3 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-rpss 6890  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-seqom 7488  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-wdom 8408  df-card 8709  df-fin2 9052  df-fin4 9053  df-fin3 9054
This theorem is referenced by:  fin1a2s  9180  finngch  9421  fin2so  33025
  Copyright terms: Public domain W3C validator