MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem12 Structured version   Visualization version   GIF version

Theorem fin23lem12 9755
Description: The beginning of the proof that every II-finite set (every chain of subsets has a maximal element) is III-finite (has no denumerable collection of subsets).

This first section is dedicated to the construction of 𝑈 and its intersection. First, the value of 𝑈 at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014.)

Hypothesis
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem12 (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
Distinct variable groups:   𝑡,𝑖,𝑢   𝐴,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hints:   𝐴(𝑡)   𝑈(𝑡)

Proof of Theorem fin23lem12
StepHypRef Expression
1 fin23lem.a . . 3 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
21seqomsuc 8095 . 2 (𝐴 ∈ ω → (𝑈‘suc 𝐴) = (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢)))(𝑈𝐴)))
3 fvex 6685 . . 3 (𝑈𝐴) ∈ V
4 fveq2 6672 . . . . . . 7 (𝑖 = 𝐴 → (𝑡𝑖) = (𝑡𝐴))
54ineq1d 4190 . . . . . 6 (𝑖 = 𝐴 → ((𝑡𝑖) ∩ 𝑢) = ((𝑡𝐴) ∩ 𝑢))
65eqeq1d 2825 . . . . 5 (𝑖 = 𝐴 → (((𝑡𝑖) ∩ 𝑢) = ∅ ↔ ((𝑡𝐴) ∩ 𝑢) = ∅))
76, 5ifbieq2d 4494 . . . 4 (𝑖 = 𝐴 → if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢)) = if(((𝑡𝐴) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝐴) ∩ 𝑢)))
8 ineq2 4185 . . . . . 6 (𝑢 = (𝑈𝐴) → ((𝑡𝐴) ∩ 𝑢) = ((𝑡𝐴) ∩ (𝑈𝐴)))
98eqeq1d 2825 . . . . 5 (𝑢 = (𝑈𝐴) → (((𝑡𝐴) ∩ 𝑢) = ∅ ↔ ((𝑡𝐴) ∩ (𝑈𝐴)) = ∅))
10 id 22 . . . . 5 (𝑢 = (𝑈𝐴) → 𝑢 = (𝑈𝐴))
119, 10, 8ifbieq12d 4496 . . . 4 (𝑢 = (𝑈𝐴) → if(((𝑡𝐴) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝐴) ∩ 𝑢)) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
12 eqid 2823 . . . 4 (𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))) = (𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢)))
133inex2 5224 . . . . 5 ((𝑡𝐴) ∩ (𝑈𝐴)) ∈ V
143, 13ifex 4517 . . . 4 if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))) ∈ V
157, 11, 12, 14ovmpo 7312 . . 3 ((𝐴 ∈ ω ∧ (𝑈𝐴) ∈ V) → (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢)))(𝑈𝐴)) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
163, 15mpan2 689 . 2 (𝐴 ∈ ω → (𝐴(𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢)))(𝑈𝐴)) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
172, 16eqtrd 2858 1 (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  Vcvv 3496  cin 3937  c0 4293  ifcif 4469   cuni 4840  ran crn 5558  suc csuc 6195  cfv 6357  (class class class)co 7158  cmpo 7160  ωcom 7582  seqωcseqom 8085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-seqom 8086
This theorem is referenced by:  fin23lem13  9756  fin23lem14  9757  fin23lem19  9760
  Copyright terms: Public domain W3C validator