MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem21 Structured version   Visualization version   GIF version

Theorem fin23lem21 9760
Description: Lemma for fin23 9810. 𝑋 is not empty. We only need here that 𝑡 has at least one set in its range besides ; the much stronger hypothesis here will serve as our induction hypothesis though. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
fin23lem21 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ≠ ∅)
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑥,𝑎   𝐹,𝑎,𝑡   𝑉,𝑎   𝑥,𝑎   𝑈,𝑎,𝑖,𝑢   𝑔,𝑎
Allowed substitution hints:   𝑈(𝑥,𝑡,𝑔)   𝐹(𝑥,𝑢,𝑔,𝑖)   𝑉(𝑥,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem21
StepHypRef Expression
1 fin23lem.a . . 3 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
2 fin23lem17.f . . 3 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
31, 2fin23lem17 9759 . 2 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ∈ ran 𝑈)
41fnseqom 8090 . . . . 5 𝑈 Fn ω
5 fvelrnb 6725 . . . . 5 (𝑈 Fn ω → ( ran 𝑈 ∈ ran 𝑈 ↔ ∃𝑎 ∈ ω (𝑈𝑎) = ran 𝑈))
64, 5ax-mp 5 . . . 4 ( ran 𝑈 ∈ ran 𝑈 ↔ ∃𝑎 ∈ ω (𝑈𝑎) = ran 𝑈)
7 id 22 . . . . . . 7 (𝑎 ∈ ω → 𝑎 ∈ ω)
8 vex 3497 . . . . . . . . . 10 𝑡 ∈ V
9 f1f1orn 6625 . . . . . . . . . 10 (𝑡:ω–1-1𝑉𝑡:ω–1-1-onto→ran 𝑡)
10 f1oen3g 8524 . . . . . . . . . 10 ((𝑡 ∈ V ∧ 𝑡:ω–1-1-onto→ran 𝑡) → ω ≈ ran 𝑡)
118, 9, 10sylancr 589 . . . . . . . . 9 (𝑡:ω–1-1𝑉 → ω ≈ ran 𝑡)
12 ominf 8729 . . . . . . . . 9 ¬ ω ∈ Fin
13 ssdif0 4322 . . . . . . . . . . 11 (ran 𝑡 ⊆ {∅} ↔ (ran 𝑡 ∖ {∅}) = ∅)
14 snfi 8593 . . . . . . . . . . . . 13 {∅} ∈ Fin
15 ssfi 8737 . . . . . . . . . . . . 13 (({∅} ∈ Fin ∧ ran 𝑡 ⊆ {∅}) → ran 𝑡 ∈ Fin)
1614, 15mpan 688 . . . . . . . . . . . 12 (ran 𝑡 ⊆ {∅} → ran 𝑡 ∈ Fin)
17 enfi 8733 . . . . . . . . . . . 12 (ω ≈ ran 𝑡 → (ω ∈ Fin ↔ ran 𝑡 ∈ Fin))
1816, 17syl5ibr 248 . . . . . . . . . . 11 (ω ≈ ran 𝑡 → (ran 𝑡 ⊆ {∅} → ω ∈ Fin))
1913, 18syl5bir 245 . . . . . . . . . 10 (ω ≈ ran 𝑡 → ((ran 𝑡 ∖ {∅}) = ∅ → ω ∈ Fin))
2019necon3bd 3030 . . . . . . . . 9 (ω ≈ ran 𝑡 → (¬ ω ∈ Fin → (ran 𝑡 ∖ {∅}) ≠ ∅))
2111, 12, 20mpisyl 21 . . . . . . . 8 (𝑡:ω–1-1𝑉 → (ran 𝑡 ∖ {∅}) ≠ ∅)
22 n0 4309 . . . . . . . . 9 ((ran 𝑡 ∖ {∅}) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (ran 𝑡 ∖ {∅}))
23 eldifsn 4718 . . . . . . . . . . 11 (𝑎 ∈ (ran 𝑡 ∖ {∅}) ↔ (𝑎 ∈ ran 𝑡𝑎 ≠ ∅))
24 elssuni 4867 . . . . . . . . . . . 12 (𝑎 ∈ ran 𝑡𝑎 ran 𝑡)
25 ssn0 4353 . . . . . . . . . . . 12 ((𝑎 ran 𝑡𝑎 ≠ ∅) → ran 𝑡 ≠ ∅)
2624, 25sylan 582 . . . . . . . . . . 11 ((𝑎 ∈ ran 𝑡𝑎 ≠ ∅) → ran 𝑡 ≠ ∅)
2723, 26sylbi 219 . . . . . . . . . 10 (𝑎 ∈ (ran 𝑡 ∖ {∅}) → ran 𝑡 ≠ ∅)
2827exlimiv 1927 . . . . . . . . 9 (∃𝑎 𝑎 ∈ (ran 𝑡 ∖ {∅}) → ran 𝑡 ≠ ∅)
2922, 28sylbi 219 . . . . . . . 8 ((ran 𝑡 ∖ {∅}) ≠ ∅ → ran 𝑡 ≠ ∅)
3021, 29syl 17 . . . . . . 7 (𝑡:ω–1-1𝑉 ran 𝑡 ≠ ∅)
311fin23lem14 9754 . . . . . . 7 ((𝑎 ∈ ω ∧ ran 𝑡 ≠ ∅) → (𝑈𝑎) ≠ ∅)
327, 30, 31syl2anr 598 . . . . . 6 ((𝑡:ω–1-1𝑉𝑎 ∈ ω) → (𝑈𝑎) ≠ ∅)
33 neeq1 3078 . . . . . 6 ((𝑈𝑎) = ran 𝑈 → ((𝑈𝑎) ≠ ∅ ↔ ran 𝑈 ≠ ∅))
3432, 33syl5ibcom 247 . . . . 5 ((𝑡:ω–1-1𝑉𝑎 ∈ ω) → ((𝑈𝑎) = ran 𝑈 ran 𝑈 ≠ ∅))
3534rexlimdva 3284 . . . 4 (𝑡:ω–1-1𝑉 → (∃𝑎 ∈ ω (𝑈𝑎) = ran 𝑈 ran 𝑈 ≠ ∅))
366, 35syl5bi 244 . . 3 (𝑡:ω–1-1𝑉 → ( ran 𝑈 ∈ ran 𝑈 ran 𝑈 ≠ ∅))
3736adantl 484 . 2 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ( ran 𝑈 ∈ ran 𝑈 ran 𝑈 ≠ ∅))
383, 37mpd 15 1 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  {cab 2799  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3932  cin 3934  wss 3935  c0 4290  ifcif 4466  𝒫 cpw 4538  {csn 4566   cuni 4837   cint 4875   class class class wbr 5065  ran crn 5555  suc csuc 6192   Fn wfn 6349  1-1wf1 6351  1-1-ontowf1o 6353  cfv 6354  (class class class)co 7155  cmpo 7157  ωcom 7579  seqωcseqom 8082  m cmap 8405  cen 8505  Fincfn 8508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-seqom 8083  df-1o 8101  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512
This theorem is referenced by:  fin23lem31  9764
  Copyright terms: Public domain W3C validator