MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem22 Structured version   Visualization version   GIF version

Theorem fin23lem22 9752
Description: Lemma for fin23 9814 but could be used elsewhere if we find a good name for it. Explicit construction of a bijection (actually an isomorphism, see fin23lem27 9753) between an infinite subset of ω and ω itself. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem22.b 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
Assertion
Ref Expression
fin23lem22 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–1-1-onto𝑆)
Distinct variable group:   𝑖,𝑗,𝑆
Allowed substitution hints:   𝐶(𝑖,𝑗)

Proof of Theorem fin23lem22
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fin23lem22.b . 2 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
2 fin23lem23 9751 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖)
3 riotacl 7134 . . 3 (∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) ∈ 𝑆)
42, 3syl 17 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) ∈ 𝑆)
5 simpll 765 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → 𝑆 ⊆ ω)
6 simpr 487 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → 𝑎𝑆)
75, 6sseldd 3971 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → 𝑎 ∈ ω)
8 nnfi 8714 . . 3 (𝑎 ∈ ω → 𝑎 ∈ Fin)
9 infi 8745 . . 3 (𝑎 ∈ Fin → (𝑎𝑆) ∈ Fin)
10 ficardom 9393 . . 3 ((𝑎𝑆) ∈ Fin → (card‘(𝑎𝑆)) ∈ ω)
117, 8, 9, 104syl 19 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → (card‘(𝑎𝑆)) ∈ ω)
12 cardnn 9395 . . . . . . 7 (𝑖 ∈ ω → (card‘𝑖) = 𝑖)
1312eqcomd 2830 . . . . . 6 (𝑖 ∈ ω → 𝑖 = (card‘𝑖))
1413eqeq1d 2826 . . . . 5 (𝑖 ∈ ω → (𝑖 = (card‘(𝑎𝑆)) ↔ (card‘𝑖) = (card‘(𝑎𝑆))))
15 eqcom 2831 . . . . 5 ((card‘𝑖) = (card‘(𝑎𝑆)) ↔ (card‘(𝑎𝑆)) = (card‘𝑖))
1614, 15syl6bb 289 . . . 4 (𝑖 ∈ ω → (𝑖 = (card‘(𝑎𝑆)) ↔ (card‘(𝑎𝑆)) = (card‘𝑖)))
1716ad2antrl 726 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → (𝑖 = (card‘(𝑎𝑆)) ↔ (card‘(𝑎𝑆)) = (card‘𝑖)))
18 simpll 765 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑆 ⊆ ω)
19 simprr 771 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑎𝑆)
2018, 19sseldd 3971 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑎 ∈ ω)
21 nnon 7589 . . . . . 6 (𝑎 ∈ ω → 𝑎 ∈ On)
22 onenon 9381 . . . . . 6 (𝑎 ∈ On → 𝑎 ∈ dom card)
2320, 21, 223syl 18 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑎 ∈ dom card)
24 inss1 4208 . . . . 5 (𝑎𝑆) ⊆ 𝑎
25 ssnum 9468 . . . . 5 ((𝑎 ∈ dom card ∧ (𝑎𝑆) ⊆ 𝑎) → (𝑎𝑆) ∈ dom card)
2623, 24, 25sylancl 588 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → (𝑎𝑆) ∈ dom card)
27 nnon 7589 . . . . . 6 (𝑖 ∈ ω → 𝑖 ∈ On)
2827ad2antrl 726 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑖 ∈ On)
29 onenon 9381 . . . . 5 (𝑖 ∈ On → 𝑖 ∈ dom card)
3028, 29syl 17 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑖 ∈ dom card)
31 carden2 9419 . . . 4 (((𝑎𝑆) ∈ dom card ∧ 𝑖 ∈ dom card) → ((card‘(𝑎𝑆)) = (card‘𝑖) ↔ (𝑎𝑆) ≈ 𝑖))
3226, 30, 31syl2anc 586 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ((card‘(𝑎𝑆)) = (card‘𝑖) ↔ (𝑎𝑆) ≈ 𝑖))
332adantrr 715 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖)
34 ineq1 4184 . . . . . . 7 (𝑗 = 𝑎 → (𝑗𝑆) = (𝑎𝑆))
3534breq1d 5079 . . . . . 6 (𝑗 = 𝑎 → ((𝑗𝑆) ≈ 𝑖 ↔ (𝑎𝑆) ≈ 𝑖))
3635riota2 7142 . . . . 5 ((𝑎𝑆 ∧ ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖) → ((𝑎𝑆) ≈ 𝑖 ↔ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = 𝑎))
3719, 33, 36syl2anc 586 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ((𝑎𝑆) ≈ 𝑖 ↔ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = 𝑎))
38 eqcom 2831 . . . 4 ((𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = 𝑎𝑎 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
3937, 38syl6bb 289 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ((𝑎𝑆) ≈ 𝑖𝑎 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑖)))
4017, 32, 393bitrd 307 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → (𝑖 = (card‘(𝑎𝑆)) ↔ 𝑎 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑖)))
411, 4, 11, 40f1o2d 7402 1 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–1-1-onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  ∃!wreu 3143  cin 3938  wss 3939   class class class wbr 5069  cmpt 5149  dom cdm 5558  Oncon0 6194  1-1-ontowf1o 6357  cfv 6358  crio 7116  ωcom 7583  cen 8509  Fincfn 8512  cardccrd 9367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-om 7584  df-wrecs 7950  df-recs 8011  df-1o 8105  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371
This theorem is referenced by:  fin23lem27  9753  fin23lem28  9765  fin23lem30  9767  isf32lem6  9783  isf32lem7  9784  isf32lem8  9785
  Copyright terms: Public domain W3C validator