Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem25 Structured version   Visualization version   GIF version

Theorem fin23lem25 9093
 Description: Lemma for fin23 9158. In a chain of finite sets, equinumerosity is equivalent to equality. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
fin23lem25 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem fin23lem25
StepHypRef Expression
1 dfpss2 3672 . . . . . . . 8 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
2 php3 8093 . . . . . . . . . 10 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴𝐵)
3 sdomnen 7931 . . . . . . . . . 10 (𝐴𝐵 → ¬ 𝐴𝐵)
42, 3syl 17 . . . . . . . . 9 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → ¬ 𝐴𝐵)
54ex 450 . . . . . . . 8 (𝐵 ∈ Fin → (𝐴𝐵 → ¬ 𝐴𝐵))
61, 5syl5bir 233 . . . . . . 7 (𝐵 ∈ Fin → ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
76adantl 482 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝐵 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
87expd 452 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵 → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵)))
9 dfpss2 3672 . . . . . . . . 9 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵 = 𝐴))
10 eqcom 2628 . . . . . . . . . . 11 (𝐵 = 𝐴𝐴 = 𝐵)
1110notbii 310 . . . . . . . . . 10 𝐵 = 𝐴 ↔ ¬ 𝐴 = 𝐵)
1211anbi2i 729 . . . . . . . . 9 ((𝐵𝐴 ∧ ¬ 𝐵 = 𝐴) ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
139, 12bitri 264 . . . . . . . 8 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐴 = 𝐵))
14 php3 8093 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
15 sdomnen 7931 . . . . . . . . . . 11 (𝐵𝐴 → ¬ 𝐵𝐴)
16 ensym 7952 . . . . . . . . . . 11 (𝐴𝐵𝐵𝐴)
1715, 16nsyl 135 . . . . . . . . . 10 (𝐵𝐴 → ¬ 𝐴𝐵)
1814, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
1918ex 450 . . . . . . . 8 (𝐴 ∈ Fin → (𝐵𝐴 → ¬ 𝐴𝐵))
2013, 19syl5bir 233 . . . . . . 7 (𝐴 ∈ Fin → ((𝐵𝐴 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
2120adantr 481 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵𝐴 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵))
2221expd 452 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵𝐴 → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵)))
238, 22jaod 395 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐴𝐵𝐵𝐴) → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵)))
24233impia 1258 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵))
2524con4d 114 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴𝐵𝐴 = 𝐵))
26 eqeng 7936 . . 3 (𝐴 ∈ Fin → (𝐴 = 𝐵𝐴𝐵))
27263ad2ant1 1080 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴 = 𝐵𝐴𝐵))
2825, 27impbid 202 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵𝐵𝐴)) → (𝐴𝐵𝐴 = 𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ⊆ wss 3556   ⊊ wpss 3557   class class class wbr 4615   ≈ cen 7899   ≺ csdm 7901  Fincfn 7902 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-br 4616  df-opab 4676  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-om 7016  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906 This theorem is referenced by:  fin23lem23  9095  fin1a2lem9  9177
 Copyright terms: Public domain W3C validator