MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem29 Structured version   Visualization version   GIF version

Theorem fin23lem29 9108
Description: Lemma for fin23 9156. The residual is built from the same elements as the previous sequence. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem29 ran 𝑍 ran 𝑡
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧,𝑎   𝐹,𝑎,𝑡   𝑤,𝑎,𝑥,𝑧,𝑃   𝑣,𝑎,𝑅,𝑖,𝑢   𝑈,𝑎,𝑖,𝑢,𝑣,𝑧   𝑍,𝑎   𝑔,𝑎
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖,𝑎)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑔,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem29
StepHypRef Expression
1 fin23lem.e . 2 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
2 eqif 4103 . . 3 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) ↔ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
32biimpi 206 . 2 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) → ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
4 rneq 5315 . . . . . 6 (𝑍 = (𝑡𝑅) → ran 𝑍 = ran (𝑡𝑅))
54unieqd 4417 . . . . 5 (𝑍 = (𝑡𝑅) → ran 𝑍 = ran (𝑡𝑅))
6 rncoss 5350 . . . . . 6 ran (𝑡𝑅) ⊆ ran 𝑡
76unissi 4432 . . . . 5 ran (𝑡𝑅) ⊆ ran 𝑡
85, 7syl6eqss 3639 . . . 4 (𝑍 = (𝑡𝑅) → ran 𝑍 ran 𝑡)
98adantl 482 . . 3 ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) → ran 𝑍 ran 𝑡)
10 rneq 5315 . . . . . 6 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 = ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
1110unieqd 4417 . . . . 5 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 = ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
12 rncoss 5350 . . . . . . 7 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
1312unissi 4432 . . . . . 6 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
14 unissb 4440 . . . . . . 7 ( ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ⊆ ran 𝑡 ↔ ∀𝑎 ∈ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))𝑎 ran 𝑡)
15 abid 2614 . . . . . . . . 9 (𝑎 ∈ {𝑎 ∣ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈)} ↔ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈))
16 fvssunirn 6175 . . . . . . . . . . . . 13 (𝑡𝑧) ⊆ ran 𝑡
1716a1i 11 . . . . . . . . . . . 12 (𝑧𝑃 → (𝑡𝑧) ⊆ ran 𝑡)
1817ssdifssd 3731 . . . . . . . . . . 11 (𝑧𝑃 → ((𝑡𝑧) ∖ ran 𝑈) ⊆ ran 𝑡)
19 sseq1 3610 . . . . . . . . . . 11 (𝑎 = ((𝑡𝑧) ∖ ran 𝑈) → (𝑎 ran 𝑡 ↔ ((𝑡𝑧) ∖ ran 𝑈) ⊆ ran 𝑡))
2018, 19syl5ibrcom 237 . . . . . . . . . 10 (𝑧𝑃 → (𝑎 = ((𝑡𝑧) ∖ ran 𝑈) → 𝑎 ran 𝑡))
2120rexlimiv 3025 . . . . . . . . 9 (∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈) → 𝑎 ran 𝑡)
2215, 21sylbi 207 . . . . . . . 8 (𝑎 ∈ {𝑎 ∣ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈)} → 𝑎 ran 𝑡)
23 eqid 2626 . . . . . . . . 9 (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
2423rnmpt 5335 . . . . . . . 8 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = {𝑎 ∣ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈)}
2522, 24eleq2s 2722 . . . . . . 7 (𝑎 ∈ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) → 𝑎 ran 𝑡)
2614, 25mprgbir 2927 . . . . . 6 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ⊆ ran 𝑡
2713, 26sstri 3597 . . . . 5 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran 𝑡
2811, 27syl6eqss 3639 . . . 4 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 ran 𝑡)
2928adantl 482 . . 3 ((¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) → ran 𝑍 ran 𝑡)
309, 29jaoi 394 . 2 (((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))) → ran 𝑍 ran 𝑡)
311, 3, 30mp2b 10 1 ran 𝑍 ran 𝑡
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1480  wcel 1992  {cab 2612  wral 2912  wrex 2913  {crab 2916  Vcvv 3191  cdif 3557  cin 3559  wss 3560  c0 3896  ifcif 4063  𝒫 cpw 4135   cuni 4407   cint 4445   class class class wbr 4618  cmpt 4678  ran crn 5080  ccom 5083  suc csuc 5687  cfv 5850  crio 6565  (class class class)co 6605  cmpt2 6607  ωcom 7013  seq𝜔cseqom 7488  𝑚 cmap 7803  cen 7897  Fincfn 7900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5813  df-fv 5858
This theorem is referenced by:  fin23lem31  9110
  Copyright terms: Public domain W3C validator