Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard2d Structured version   Visualization version   GIF version

Theorem findcard2d 8153
 Description: Deduction version of findcard2 8151. (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
findcard2d.ch (𝑥 = ∅ → (𝜓𝜒))
findcard2d.th (𝑥 = 𝑦 → (𝜓𝜃))
findcard2d.ta (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓𝜏))
findcard2d.et (𝑥 = 𝐴 → (𝜓𝜂))
findcard2d.z (𝜑𝜒)
findcard2d.i ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝜃𝜏))
findcard2d.a (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
findcard2d (𝜑𝜂)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝜓,𝑦,𝑧   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜂,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)   𝜂(𝑦,𝑧)

Proof of Theorem findcard2d
StepHypRef Expression
1 ssid 3608 . 2 𝐴𝐴
2 findcard2d.a . . . 4 (𝜑𝐴 ∈ Fin)
32adantr 481 . . 3 ((𝜑𝐴𝐴) → 𝐴 ∈ Fin)
4 sseq1 3610 . . . . . 6 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
54anbi2d 739 . . . . 5 (𝑥 = ∅ → ((𝜑𝑥𝐴) ↔ (𝜑 ∧ ∅ ⊆ 𝐴)))
6 findcard2d.ch . . . . 5 (𝑥 = ∅ → (𝜓𝜒))
75, 6imbi12d 334 . . . 4 (𝑥 = ∅ → (((𝜑𝑥𝐴) → 𝜓) ↔ ((𝜑 ∧ ∅ ⊆ 𝐴) → 𝜒)))
8 sseq1 3610 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
98anbi2d 739 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
10 findcard2d.th . . . . 5 (𝑥 = 𝑦 → (𝜓𝜃))
119, 10imbi12d 334 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝜓) ↔ ((𝜑𝑦𝐴) → 𝜃)))
12 sseq1 3610 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
1312anbi2d 739 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝜑𝑥𝐴) ↔ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)))
14 findcard2d.ta . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓𝜏))
1513, 14imbi12d 334 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝜑𝑥𝐴) → 𝜓) ↔ ((𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝜏)))
16 sseq1 3610 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
1716anbi2d 739 . . . . 5 (𝑥 = 𝐴 → ((𝜑𝑥𝐴) ↔ (𝜑𝐴𝐴)))
18 findcard2d.et . . . . 5 (𝑥 = 𝐴 → (𝜓𝜂))
1917, 18imbi12d 334 . . . 4 (𝑥 = 𝐴 → (((𝜑𝑥𝐴) → 𝜓) ↔ ((𝜑𝐴𝐴) → 𝜂)))
20 findcard2d.z . . . . 5 (𝜑𝜒)
2120adantr 481 . . . 4 ((𝜑 ∧ ∅ ⊆ 𝐴) → 𝜒)
22 simprl 793 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝜑)
23 simprr 795 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
2423unssad 3773 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑦𝐴)
2522, 24jca 554 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝜑𝑦𝐴))
26 id 22 . . . . . . . . . . 11 ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
27 vsnid 4185 . . . . . . . . . . . 12 𝑧 ∈ {𝑧}
28 elun2 3764 . . . . . . . . . . . 12 (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝑦 ∪ {𝑧}))
2927, 28mp1i 13 . . . . . . . . . . 11 ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑧 ∈ (𝑦 ∪ {𝑧}))
3026, 29sseldd 3588 . . . . . . . . . 10 ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑧𝐴)
3130ad2antll 764 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧𝐴)
32 simplr 791 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ¬ 𝑧𝑦)
3331, 32eldifd 3570 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ (𝐴𝑦))
34 findcard2d.i . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝜃𝜏))
3522, 24, 33, 34syl12anc 1321 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝜃𝜏))
3625, 35embantd 59 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (((𝜑𝑦𝐴) → 𝜃) → 𝜏))
3736ex 450 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (((𝜑𝑦𝐴) → 𝜃) → 𝜏)))
3837com23 86 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((𝜑𝑦𝐴) → 𝜃) → ((𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝜏)))
397, 11, 15, 19, 21, 38findcard2s 8152 . . 3 (𝐴 ∈ Fin → ((𝜑𝐴𝐴) → 𝜂))
403, 39mpcom 38 . 2 ((𝜑𝐴𝐴) → 𝜂)
411, 40mpan2 706 1 (𝜑𝜂)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ∖ cdif 3556   ∪ cun 3557   ⊆ wss 3559  ∅c0 3896  {csn 4153  Fincfn 7906 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-om 7020  df-1o 7512  df-er 7694  df-en 7907  df-fin 7910 This theorem is referenced by:  fprodmodd  14660  sumeven  15041  sumodd  15042  maducoeval2  20374  madugsum  20377  esum2dlem  29953  fiunelcarsg  30177  carsgclctunlem1  30178  fiiuncl  38744  mpct  38890  fprodexp  39253  fprodabs2  39254  mccl  39257  fprodcn  39259  fprodcncf  39440  dvnprodlem3  39491  sge0iunmptlemfi  39958  hoidmvle  40142
 Copyright terms: Public domain W3C validator