MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard2s Structured version   Visualization version   GIF version

Theorem findcard2s 8064
Description: Variation of findcard2 8063 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.)
Hypotheses
Ref Expression
findcard2s.1 (𝑥 = ∅ → (𝜑𝜓))
findcard2s.2 (𝑥 = 𝑦 → (𝜑𝜒))
findcard2s.3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
findcard2s.4 (𝑥 = 𝐴 → (𝜑𝜏))
findcard2s.5 𝜓
findcard2s.6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜒𝜃))
Assertion
Ref Expression
findcard2s (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜒,𝑥   𝜑,𝑦,𝑧   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)

Proof of Theorem findcard2s
StepHypRef Expression
1 findcard2s.1 . 2 (𝑥 = ∅ → (𝜑𝜓))
2 findcard2s.2 . 2 (𝑥 = 𝑦 → (𝜑𝜒))
3 findcard2s.3 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
4 findcard2s.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
5 findcard2s.5 . 2 𝜓
6 findcard2s.6 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜒𝜃))
76ex 449 . . 3 (𝑦 ∈ Fin → (¬ 𝑧𝑦 → (𝜒𝜃)))
8 uncom 3719 . . . . . . 7 ({𝑧} ∪ 𝑦) = (𝑦 ∪ {𝑧})
9 snssi 4280 . . . . . . . 8 (𝑧𝑦 → {𝑧} ⊆ 𝑦)
10 ssequn1 3745 . . . . . . . 8 ({𝑧} ⊆ 𝑦 ↔ ({𝑧} ∪ 𝑦) = 𝑦)
119, 10sylib 207 . . . . . . 7 (𝑧𝑦 → ({𝑧} ∪ 𝑦) = 𝑦)
128, 11syl5reqr 2659 . . . . . 6 (𝑧𝑦𝑦 = (𝑦 ∪ {𝑧}))
13 vex 3176 . . . . . . 7 𝑦 ∈ V
1413eqvinc 3300 . . . . . 6 (𝑦 = (𝑦 ∪ {𝑧}) ↔ ∃𝑥(𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})))
1512, 14sylib 207 . . . . 5 (𝑧𝑦 → ∃𝑥(𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})))
162bicomd 212 . . . . . . 7 (𝑥 = 𝑦 → (𝜒𝜑))
1716, 3sylan9bb 732 . . . . . 6 ((𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})) → (𝜒𝜃))
1817exlimiv 1845 . . . . 5 (∃𝑥(𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})) → (𝜒𝜃))
1915, 18syl 17 . . . 4 (𝑧𝑦 → (𝜒𝜃))
2019biimpd 218 . . 3 (𝑧𝑦 → (𝜒𝜃))
217, 20pm2.61d2 171 . 2 (𝑦 ∈ Fin → (𝜒𝜃))
221, 2, 3, 4, 5, 21findcard2 8063 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  cun 3538  wss 3540  c0 3874  {csn 4125  Fincfn 7819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-br 4579  df-opab 4639  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-om 6936  df-1o 7425  df-er 7607  df-en 7820  df-fin 7823
This theorem is referenced by:  findcard2d  8065  ac6sfi  8067  domunfican  8096  fodomfi  8102  hashxplem  13035  hashmap  13037  hashbc  13049  hashf1lem2  13052  hashf1  13053  fsum2d  14293  fsumabs  14323  fsumrlim  14333  fsumo1  14334  fsumiun  14343  incexclem  14356  fprod2d  14499  coprmprod  15162  coprmproddvds  15164  gsum2dlem2  18142  ablfac1eulem  18243  mplcoe1  19235  mplcoe5  19238  coe1fzgsumd  19442  evl1gsumd  19491  mdetunilem9  20193  ptcmpfi  21374  tmdgsum  21657  fsumcn  22429  ovolfiniun  23021  volfiniun  23067  itgfsum  23344  dvmptfsum  23487  jensen  24460  gsumle  28904  gsumvsca1  28907  gsumvsca2  28908  finixpnum  32358  matunitlindflem1  32369  pwslnm  36476  fnchoice  38005  dvmptfprod  38629
  Copyright terms: Public domain W3C validator