MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finds Structured version   Visualization version   GIF version

Theorem finds 7602
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.)
Hypotheses
Ref Expression
finds.1 (𝑥 = ∅ → (𝜑𝜓))
finds.2 (𝑥 = 𝑦 → (𝜑𝜒))
finds.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
finds.4 (𝑥 = 𝐴 → (𝜑𝜏))
finds.5 𝜓
finds.6 (𝑦 ∈ ω → (𝜒𝜃))
Assertion
Ref Expression
finds (𝐴 ∈ ω → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem finds
StepHypRef Expression
1 finds.5 . . . . 5 𝜓
2 0ex 5203 . . . . . 6 ∅ ∈ V
3 finds.1 . . . . . 6 (𝑥 = ∅ → (𝜑𝜓))
42, 3elab 3666 . . . . 5 (∅ ∈ {𝑥𝜑} ↔ 𝜓)
51, 4mpbir 233 . . . 4 ∅ ∈ {𝑥𝜑}
6 finds.6 . . . . . 6 (𝑦 ∈ ω → (𝜒𝜃))
7 vex 3497 . . . . . . 7 𝑦 ∈ V
8 finds.2 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜒))
97, 8elab 3666 . . . . . 6 (𝑦 ∈ {𝑥𝜑} ↔ 𝜒)
107sucex 7520 . . . . . . 7 suc 𝑦 ∈ V
11 finds.3 . . . . . . 7 (𝑥 = suc 𝑦 → (𝜑𝜃))
1210, 11elab 3666 . . . . . 6 (suc 𝑦 ∈ {𝑥𝜑} ↔ 𝜃)
136, 9, 123imtr4g 298 . . . . 5 (𝑦 ∈ ω → (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑}))
1413rgen 3148 . . . 4 𝑦 ∈ ω (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑})
15 peano5 7599 . . . 4 ((∅ ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑})) → ω ⊆ {𝑥𝜑})
165, 14, 15mp2an 690 . . 3 ω ⊆ {𝑥𝜑}
1716sseli 3962 . 2 (𝐴 ∈ ω → 𝐴 ∈ {𝑥𝜑})
18 finds.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
1918elabg 3665 . 2 (𝐴 ∈ ω → (𝐴 ∈ {𝑥𝜑} ↔ 𝜏))
2017, 19mpbid 234 1 (𝐴 ∈ ω → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  {cab 2799  wral 3138  wss 3935  c0 4290  suc csuc 6187  ωcom 7574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-tr 5165  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-om 7575
This theorem is referenced by:  findsg  7603  findes  7606  seqomlem1  8080  nna0r  8229  nnm0r  8230  nnawordi  8241  nneob  8273  nneneq  8694  pssnn  8730  inf3lem1  9085  inf3lem2  9086  cantnfval2  9126  cantnfp1lem3  9137  r1fin  9196  ackbij1lem14  9649  ackbij1lem16  9651  ackbij1  9654  ackbij2lem2  9656  ackbij2lem3  9657  infpssrlem4  9722  fin23lem14  9749  fin23lem34  9762  itunitc1  9836  ituniiun  9838  om2uzuzi  13311  om2uzlti  13312  om2uzrdg  13318  uzrdgxfr  13329  hashgadd  13732  mreexexd  16913  satfrel  32609  satfdm  32611  satfrnmapom  32612  satf0op  32619  satf0n0  32620  sat1el2xp  32621  fmlafvel  32627  fmlaomn0  32632  gonar  32637  goalr  32639  satffun  32651  trpredmintr  33065  findfvcl  33795  finxp00  34677
  Copyright terms: Public domain W3C validator