MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fineqvlem Structured version   Visualization version   GIF version

Theorem fineqvlem 8720
Description: Lemma for fineqv 8721. (Contributed by Mario Carneiro, 20-Jan-2013.) (Proof shortened by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fineqvlem ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴)

Proof of Theorem fineqvlem
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5270 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21adantr 481 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝐴 ∈ V)
32pwexd 5271 . 2 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝒫 𝐴 ∈ V)
4 ssrab2 4053 . . . . 5 {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ⊆ 𝒫 𝐴
5 elpw2g 5238 . . . . . 6 (𝒫 𝐴 ∈ V → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ⊆ 𝒫 𝐴))
62, 5syl 17 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ⊆ 𝒫 𝐴))
74, 6mpbiri 259 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴)
87a1d 25 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝑏 ∈ ω → {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴))
9 isinf 8719 . . . . . . . . 9 𝐴 ∈ Fin → ∀𝑏 ∈ ω ∃𝑒(𝑒𝐴𝑒𝑏))
109r19.21bi 3205 . . . . . . . 8 ((¬ 𝐴 ∈ Fin ∧ 𝑏 ∈ ω) → ∃𝑒(𝑒𝐴𝑒𝑏))
1110ad2ant2lr 744 . . . . . . 7 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ∃𝑒(𝑒𝐴𝑒𝑏))
12 velpw 4543 . . . . . . . . . . 11 (𝑒 ∈ 𝒫 𝐴𝑒𝐴)
1312biimpri 229 . . . . . . . . . 10 (𝑒𝐴𝑒 ∈ 𝒫 𝐴)
1413anim1i 614 . . . . . . . . 9 ((𝑒𝐴𝑒𝑏) → (𝑒 ∈ 𝒫 𝐴𝑒𝑏))
15 breq1 5060 . . . . . . . . . 10 (𝑑 = 𝑒 → (𝑑𝑏𝑒𝑏))
1615elrab 3677 . . . . . . . . 9 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ↔ (𝑒 ∈ 𝒫 𝐴𝑒𝑏))
1714, 16sylibr 235 . . . . . . . 8 ((𝑒𝐴𝑒𝑏) → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏})
1817eximi 1826 . . . . . . 7 (∃𝑒(𝑒𝐴𝑒𝑏) → ∃𝑒 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏})
1911, 18syl 17 . . . . . 6 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ∃𝑒 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏})
20 eleq2 2898 . . . . . . . . 9 ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ↔ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}))
2120biimpcd 250 . . . . . . . 8 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}))
2221adantl 482 . . . . . . 7 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}))
2316simprbi 497 . . . . . . . . . 10 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} → 𝑒𝑏)
24 breq1 5060 . . . . . . . . . . . 12 (𝑑 = 𝑒 → (𝑑𝑐𝑒𝑐))
2524elrab 3677 . . . . . . . . . . 11 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} ↔ (𝑒 ∈ 𝒫 𝐴𝑒𝑐))
2625simprbi 497 . . . . . . . . . 10 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑒𝑐)
27 ensym 8546 . . . . . . . . . . 11 (𝑒𝑏𝑏𝑒)
28 entr 8549 . . . . . . . . . . 11 ((𝑏𝑒𝑒𝑐) → 𝑏𝑐)
2927, 28sylan 580 . . . . . . . . . 10 ((𝑒𝑏𝑒𝑐) → 𝑏𝑐)
3023, 26, 29syl2an 595 . . . . . . . . 9 ((𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}) → 𝑏𝑐)
3130ex 413 . . . . . . . 8 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏𝑐))
3231adantl 482 . . . . . . 7 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏𝑐))
33 nneneq 8688 . . . . . . . . 9 ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏𝑐𝑏 = 𝑐))
3433biimpd 230 . . . . . . . 8 ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏𝑐𝑏 = 𝑐))
3534ad2antlr 723 . . . . . . 7 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → (𝑏𝑐𝑏 = 𝑐))
3622, 32, 353syld 60 . . . . . 6 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏 = 𝑐))
3719, 36exlimddv 1927 . . . . 5 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏 = 𝑐))
38 breq2 5061 . . . . . 6 (𝑏 = 𝑐 → (𝑑𝑏𝑑𝑐))
3938rabbidv 3478 . . . . 5 (𝑏 = 𝑐 → {𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐})
4037, 39impbid1 226 . . . 4 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} ↔ 𝑏 = 𝑐))
4140ex 413 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} ↔ 𝑏 = 𝑐)))
428, 41dom2d 8538 . 2 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝒫 𝐴 ∈ V → ω ≼ 𝒫 𝒫 𝐴))
433, 42mpd 15 1 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wex 1771  wcel 2105  {crab 3139  Vcvv 3492  wss 3933  𝒫 cpw 4535   class class class wbr 5057  ωcom 7569  cen 8494  cdom 8495  Fincfn 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-er 8278  df-en 8498  df-dom 8499  df-fin 8501
This theorem is referenced by:  fineqv  8721  isfin1-2  9795
  Copyright terms: Public domain W3C validator