MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finrusgrfusgr Structured version   Visualization version   GIF version

Theorem finrusgrfusgr 27349
Description: A finite regular simple graph is a finite simple graph. (Contributed by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
finrusgrfusgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
finrusgrfusgr ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)

Proof of Theorem finrusgrfusgr
StepHypRef Expression
1 rusgrusgr 27348 . . 3 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
21anim1i 616 . 2 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
3 finrusgrfusgr.v . . 3 𝑉 = (Vtx‘𝐺)
43isfusgr 27102 . 2 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
52, 4sylibr 236 1 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114   class class class wbr 5068  cfv 6357  Fincfn 8511  Vtxcvtx 26783  USGraphcusgr 26936  FinUSGraphcfusgr 27100   RegUSGraph crusgr 27340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-xp 5563  df-iota 6316  df-fv 6365  df-fusgr 27101  df-rusgr 27342
This theorem is referenced by:  numclwwlk1  28142  numclwwlk3  28166  numclwwlk5  28169  numclwwlk7lem  28170  numclwwlk6  28171  frgrreggt1  28174
  Copyright terms: Public domain W3C validator