MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2size Structured version   Visualization version   GIF version

Theorem finsumvtxdg2size 27334
Description: The sum of the degrees of all vertices of a finite pseudograph of finite size is twice the size of the pseudograph. See equation (1) in section I.1 in [Bollobas] p. 4. Here, the "proof" is simply the statement "Since each edge has two endvertices, the sum of the degrees is exactly twice the number of edges". The formal proof of this theorem (for pseudographs) is much more complicated, taking also the used auxiliary theorems into account. The proof for a (finite) simple graph (see fusgr1th 27335) would be shorter, but nevertheless still laborious. Although this theorem would hold also for infinite pseudographs and pseudographs of infinite size, the proof of this most general version (see theorem "sumvtxdg2size" below) would require many more auxiliary theorems (e.g., the extension of the sum Σ over an arbitrary set).

I dedicate this theorem and its proof to Norman Megill, who deceased too early on December 9, 2021. This proof is an example for the rigor which was the main motivation for Norman Megill to invent and develop Metamath, see section 1.1.6 "Rigor" on page 19 of the Metamath book: "... it is usually assumed in mathematical literature that the person reading the proof is a mathematician familiar with the specialty being described, and that the missing steps are obvious to such a reader or at least the reader is capable of filling them in." I filled in the missing steps of Bollobas' proof as Norm would have liked it... (Contributed by Alexander van der Vekens, 19-Dec-2021.)

Hypotheses
Ref Expression
sumvtxdg2size.v 𝑉 = (Vtx‘𝐺)
sumvtxdg2size.i 𝐼 = (iEdg‘𝐺)
sumvtxdg2size.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
finsumvtxdg2size ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉
Allowed substitution hints:   𝐷(𝑣)   𝐼(𝑣)

Proof of Theorem finsumvtxdg2size
Dummy variables 𝑒 𝑘 𝑛 𝑓 𝑖 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgrop 26881 . . . 4 (𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph)
2 fvex 6685 . . . . . 6 (iEdg‘𝐺) ∈ V
3 fvex 6685 . . . . . . 7 (iEdg‘⟨𝑘, 𝑒⟩) ∈ V
43resex 5901 . . . . . 6 ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ V
5 eleq1 2902 . . . . . . . 8 (𝑒 = (iEdg‘𝐺) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
65adantl 484 . . . . . . 7 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑒 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
7 simpl 485 . . . . . . . . 9 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → 𝑘 = (Vtx‘𝐺))
8 oveq12 7167 . . . . . . . . . . 11 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (𝑘VtxDeg𝑒) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
98fveq1d 6674 . . . . . . . . . 10 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → ((𝑘VtxDeg𝑒)‘𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
109adantr 483 . . . . . . . . 9 (((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) ∧ 𝑣𝑘) → ((𝑘VtxDeg𝑒)‘𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
117, 10sumeq12dv 15065 . . . . . . . 8 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
12 fveq2 6672 . . . . . . . . . 10 (𝑒 = (iEdg‘𝐺) → (♯‘𝑒) = (♯‘(iEdg‘𝐺)))
1312oveq2d 7174 . . . . . . . . 9 (𝑒 = (iEdg‘𝐺) → (2 · (♯‘𝑒)) = (2 · (♯‘(iEdg‘𝐺))))
1413adantl 484 . . . . . . . 8 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (2 · (♯‘𝑒)) = (2 · (♯‘(iEdg‘𝐺))))
1511, 14eqeq12d 2839 . . . . . . 7 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → (Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)) ↔ Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺)))))
166, 15imbi12d 347 . . . . . 6 ((𝑘 = (Vtx‘𝐺) ∧ 𝑒 = (iEdg‘𝐺)) → ((𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))) ↔ ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
17 eleq1 2902 . . . . . . . 8 (𝑒 = 𝑓 → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
1817adantl 484 . . . . . . 7 ((𝑘 = 𝑤𝑒 = 𝑓) → (𝑒 ∈ Fin ↔ 𝑓 ∈ Fin))
19 simpl 485 . . . . . . . . 9 ((𝑘 = 𝑤𝑒 = 𝑓) → 𝑘 = 𝑤)
20 oveq12 7167 . . . . . . . . . . . 12 ((𝑘 = 𝑤𝑒 = 𝑓) → (𝑘VtxDeg𝑒) = (𝑤VtxDeg𝑓))
21 df-ov 7161 . . . . . . . . . . . 12 (𝑤VtxDeg𝑓) = (VtxDeg‘⟨𝑤, 𝑓⟩)
2220, 21syl6eq 2874 . . . . . . . . . . 11 ((𝑘 = 𝑤𝑒 = 𝑓) → (𝑘VtxDeg𝑒) = (VtxDeg‘⟨𝑤, 𝑓⟩))
2322fveq1d 6674 . . . . . . . . . 10 ((𝑘 = 𝑤𝑒 = 𝑓) → ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣))
2423adantr 483 . . . . . . . . 9 (((𝑘 = 𝑤𝑒 = 𝑓) ∧ 𝑣𝑘) → ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣))
2519, 24sumeq12dv 15065 . . . . . . . 8 ((𝑘 = 𝑤𝑒 = 𝑓) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣))
26 fveq2 6672 . . . . . . . . . 10 (𝑒 = 𝑓 → (♯‘𝑒) = (♯‘𝑓))
2726oveq2d 7174 . . . . . . . . 9 (𝑒 = 𝑓 → (2 · (♯‘𝑒)) = (2 · (♯‘𝑓)))
2827adantl 484 . . . . . . . 8 ((𝑘 = 𝑤𝑒 = 𝑓) → (2 · (♯‘𝑒)) = (2 · (♯‘𝑓)))
2925, 28eqeq12d 2839 . . . . . . 7 ((𝑘 = 𝑤𝑒 = 𝑓) → (Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)) ↔ Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓))))
3018, 29imbi12d 347 . . . . . 6 ((𝑘 = 𝑤𝑒 = 𝑓) → ((𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))) ↔ (𝑓 ∈ Fin → Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓)))))
31 vex 3499 . . . . . . . . 9 𝑘 ∈ V
32 vex 3499 . . . . . . . . 9 𝑒 ∈ V
3331, 32opvtxfvi 26796 . . . . . . . 8 (Vtx‘⟨𝑘, 𝑒⟩) = 𝑘
3433eqcomi 2832 . . . . . . 7 𝑘 = (Vtx‘⟨𝑘, 𝑒⟩)
35 eqid 2823 . . . . . . 7 (iEdg‘⟨𝑘, 𝑒⟩) = (iEdg‘⟨𝑘, 𝑒⟩)
36 eqid 2823 . . . . . . 7 {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}
37 eqid 2823 . . . . . . 7 ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩ = ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩
3834, 35, 36, 37upgrres 27090 . . . . . 6 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) → ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩ ∈ UPGraph)
39 eleq1 2902 . . . . . . . 8 (𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) → (𝑓 ∈ Fin ↔ ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin))
4039adantl 484 . . . . . . 7 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (𝑓 ∈ Fin ↔ ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin))
41 simpl 485 . . . . . . . . 9 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → 𝑤 = (𝑘 ∖ {𝑛}))
42 opeq12 4807 . . . . . . . . . . . 12 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → ⟨𝑤, 𝑓⟩ = ⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)
4342fveq2d 6676 . . . . . . . . . . 11 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (VtxDeg‘⟨𝑤, 𝑓⟩) = (VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩))
4443fveq1d 6674 . . . . . . . . . 10 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = ((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣))
4544adantr 483 . . . . . . . . 9 (((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) ∧ 𝑣𝑤) → ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = ((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣))
4641, 45sumeq12dv 15065 . . . . . . . 8 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣))
47 fveq2 6672 . . . . . . . . . 10 (𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) → (♯‘𝑓) = (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))
4847oveq2d 7174 . . . . . . . . 9 (𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) → (2 · (♯‘𝑓)) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))
4948adantl 484 . . . . . . . 8 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (2 · (♯‘𝑓)) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))
5046, 49eqeq12d 2839 . . . . . . 7 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → (Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓)) ↔ Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))))
5140, 50imbi12d 347 . . . . . 6 ((𝑤 = (𝑘 ∖ {𝑛}) ∧ 𝑓 = ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})) → ((𝑓 ∈ Fin → Σ𝑣𝑤 ((VtxDeg‘⟨𝑤, 𝑓⟩)‘𝑣) = (2 · (♯‘𝑓))) ↔ (((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))))
52 hasheq0 13727 . . . . . . . . 9 (𝑘 ∈ V → ((♯‘𝑘) = 0 ↔ 𝑘 = ∅))
5352elv 3501 . . . . . . . 8 ((♯‘𝑘) = 0 ↔ 𝑘 = ∅)
54 2t0e0 11809 . . . . . . . . . 10 (2 · 0) = 0
5554a1i 11 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (2 · 0) = 0)
5631, 32opiedgfvi 26797 . . . . . . . . . . . . 13 (iEdg‘⟨𝑘, 𝑒⟩) = 𝑒
5756eqcomi 2832 . . . . . . . . . . . 12 𝑒 = (iEdg‘⟨𝑘, 𝑒⟩)
58 upgruhgr 26889 . . . . . . . . . . . . . 14 (⟨𝑘, 𝑒⟩ ∈ UPGraph → ⟨𝑘, 𝑒⟩ ∈ UHGraph)
5958adantr 483 . . . . . . . . . . . . 13 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → ⟨𝑘, 𝑒⟩ ∈ UHGraph)
6034eqeq1i 2828 . . . . . . . . . . . . . 14 (𝑘 = ∅ ↔ (Vtx‘⟨𝑘, 𝑒⟩) = ∅)
61 uhgr0vb 26859 . . . . . . . . . . . . . 14 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (Vtx‘⟨𝑘, 𝑒⟩) = ∅) → (⟨𝑘, 𝑒⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑘, 𝑒⟩) = ∅))
6260, 61sylan2b 595 . . . . . . . . . . . . 13 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (⟨𝑘, 𝑒⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑘, 𝑒⟩) = ∅))
6359, 62mpbid 234 . . . . . . . . . . . 12 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (iEdg‘⟨𝑘, 𝑒⟩) = ∅)
6457, 63syl5eq 2870 . . . . . . . . . . 11 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → 𝑒 = ∅)
65 hasheq0 13727 . . . . . . . . . . . 12 (𝑒 ∈ V → ((♯‘𝑒) = 0 ↔ 𝑒 = ∅))
6665elv 3501 . . . . . . . . . . 11 ((♯‘𝑒) = 0 ↔ 𝑒 = ∅)
6764, 66sylibr 236 . . . . . . . . . 10 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (♯‘𝑒) = 0)
6867oveq2d 7174 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → (2 · (♯‘𝑒)) = (2 · 0))
69 sumeq1 15047 . . . . . . . . . . 11 (𝑘 = ∅ → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣 ∈ ∅ ((𝑘VtxDeg𝑒)‘𝑣))
70 sum0 15080 . . . . . . . . . . 11 Σ𝑣 ∈ ∅ ((𝑘VtxDeg𝑒)‘𝑣) = 0
7169, 70syl6eq 2874 . . . . . . . . . 10 (𝑘 = ∅ → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = 0)
7271adantl 484 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = 0)
7355, 68, 723eqtr4rd 2869 . . . . . . . 8 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑘 = ∅) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)))
7453, 73sylan2b 595 . . . . . . 7 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = 0) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)))
7574a1d 25 . . . . . 6 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = 0) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))
76 eleq1 2902 . . . . . . . . . . 11 ((𝑦 + 1) = (♯‘𝑘) → ((𝑦 + 1) ∈ ℕ0 ↔ (♯‘𝑘) ∈ ℕ0))
7776eqcoms 2831 . . . . . . . . . 10 ((♯‘𝑘) = (𝑦 + 1) → ((𝑦 + 1) ∈ ℕ0 ↔ (♯‘𝑘) ∈ ℕ0))
78773ad2ant2 1130 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → ((𝑦 + 1) ∈ ℕ0 ↔ (♯‘𝑘) ∈ ℕ0))
79 hashclb 13722 . . . . . . . . . . . 12 (𝑘 ∈ V → (𝑘 ∈ Fin ↔ (♯‘𝑘) ∈ ℕ0))
8079biimprd 250 . . . . . . . . . . 11 (𝑘 ∈ V → ((♯‘𝑘) ∈ ℕ0𝑘 ∈ Fin))
8180elv 3501 . . . . . . . . . 10 ((♯‘𝑘) ∈ ℕ0𝑘 ∈ Fin)
82 eqid 2823 . . . . . . . . . . . . . . 15 (𝑘 ∖ {𝑛}) = (𝑘 ∖ {𝑛})
83 eqid 2823 . . . . . . . . . . . . . . 15 {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)}
8456dmeqi 5775 . . . . . . . . . . . . . . . . . 18 dom (iEdg‘⟨𝑘, 𝑒⟩) = dom 𝑒
8584rabeqi 3484 . . . . . . . . . . . . . . . . 17 {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}
86 eqidd 2824 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ dom 𝑒𝑛 = 𝑛)
8756a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ dom 𝑒 → (iEdg‘⟨𝑘, 𝑒⟩) = 𝑒)
8887fveq1d 6674 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ dom 𝑒 → ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖) = (𝑒𝑖))
8986, 88neleq12d 3129 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ dom 𝑒 → (𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖) ↔ 𝑛 ∉ (𝑒𝑖)))
9089rabbiia 3474 . . . . . . . . . . . . . . . . 17 {𝑖 ∈ dom 𝑒𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)}
9185, 90eqtri 2846 . . . . . . . . . . . . . . . 16 {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)} = {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)}
9256, 91reseq12i 5853 . . . . . . . . . . . . . . 15 ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) = (𝑒 ↾ {𝑖 ∈ dom 𝑒𝑛 ∉ (𝑒𝑖)})
9334, 57, 82, 83, 92, 37finsumvtxdg2sstep 27333 . . . . . . . . . . . . . 14 (((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) ∧ (𝑘 ∈ Fin ∧ 𝑒 ∈ Fin)) → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → Σ𝑣𝑘 ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣) = (2 · (♯‘𝑒))))
94 df-ov 7161 . . . . . . . . . . . . . . . . . 18 (𝑘VtxDeg𝑒) = (VtxDeg‘⟨𝑘, 𝑒⟩)
9594fveq1i 6673 . . . . . . . . . . . . . . . . 17 ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣)
9695a1i 11 . . . . . . . . . . . . . . . 16 (𝑣𝑘 → ((𝑘VtxDeg𝑒)‘𝑣) = ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣))
9796sumeq2i 15058 . . . . . . . . . . . . . . 15 Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = Σ𝑣𝑘 ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣)
9897eqeq1i 2828 . . . . . . . . . . . . . 14 𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)) ↔ Σ𝑣𝑘 ((VtxDeg‘⟨𝑘, 𝑒⟩)‘𝑣) = (2 · (♯‘𝑒)))
9993, 98syl6ibr 254 . . . . . . . . . . . . 13 (((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) ∧ (𝑘 ∈ Fin ∧ 𝑒 ∈ Fin)) → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))
10099exp32 423 . . . . . . . . . . . 12 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) → (𝑘 ∈ Fin → (𝑒 ∈ Fin → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
101100com34 91 . . . . . . . . . . 11 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ 𝑛𝑘) → (𝑘 ∈ Fin → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
1021013adant2 1127 . . . . . . . . . 10 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → (𝑘 ∈ Fin → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
10381, 102syl5 34 . . . . . . . . 9 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → ((♯‘𝑘) ∈ ℕ0 → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
10478, 103sylbid 242 . . . . . . . 8 ((⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘) → ((𝑦 + 1) ∈ ℕ0 → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))))
105104impcom 410 . . . . . . 7 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘)) → ((((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒)))))
106105imp 409 . . . . . 6 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑘, 𝑒⟩ ∈ UPGraph ∧ (♯‘𝑘) = (𝑦 + 1) ∧ 𝑛𝑘)) ∧ (((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}) ∈ Fin → Σ𝑣 ∈ (𝑘 ∖ {𝑛})((VtxDeg‘⟨(𝑘 ∖ {𝑛}), ((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)})⟩)‘𝑣) = (2 · (♯‘((iEdg‘⟨𝑘, 𝑒⟩) ↾ {𝑖 ∈ dom (iEdg‘⟨𝑘, 𝑒⟩) ∣ 𝑛 ∉ ((iEdg‘⟨𝑘, 𝑒⟩)‘𝑖)}))))) → (𝑒 ∈ Fin → Σ𝑣𝑘 ((𝑘VtxDeg𝑒)‘𝑣) = (2 · (♯‘𝑒))))
1072, 4, 16, 30, 38, 51, 75, 106opfi1ind 13863 . . . . 5 ((⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ∧ (Vtx‘𝐺) ∈ Fin) → ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺)))))
108107ex 415 . . . 4 (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph → ((Vtx‘𝐺) ∈ Fin → ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
1091, 108syl 17 . . 3 (𝐺 ∈ UPGraph → ((Vtx‘𝐺) ∈ Fin → ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
110 sumvtxdg2size.v . . . . 5 𝑉 = (Vtx‘𝐺)
111110eleq1i 2905 . . . 4 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
112111a1i 11 . . 3 (𝐺 ∈ UPGraph → (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin))
113 sumvtxdg2size.i . . . . . 6 𝐼 = (iEdg‘𝐺)
114113eleq1i 2905 . . . . 5 (𝐼 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin)
115114a1i 11 . . . 4 (𝐺 ∈ UPGraph → (𝐼 ∈ Fin ↔ (iEdg‘𝐺) ∈ Fin))
116110a1i 11 . . . . . 6 (𝐺 ∈ UPGraph → 𝑉 = (Vtx‘𝐺))
117 sumvtxdg2size.d . . . . . . . . 9 𝐷 = (VtxDeg‘𝐺)
118 vtxdgop 27254 . . . . . . . . 9 (𝐺 ∈ UPGraph → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
119117, 118syl5eq 2870 . . . . . . . 8 (𝐺 ∈ UPGraph → 𝐷 = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
120119fveq1d 6674 . . . . . . 7 (𝐺 ∈ UPGraph → (𝐷𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
121120adantr 483 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝑣𝑉) → (𝐷𝑣) = (((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
122116, 121sumeq12dv 15065 . . . . 5 (𝐺 ∈ UPGraph → Σ𝑣𝑉 (𝐷𝑣) = Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣))
123113fveq2i 6675 . . . . . . 7 (♯‘𝐼) = (♯‘(iEdg‘𝐺))
124123oveq2i 7169 . . . . . 6 (2 · (♯‘𝐼)) = (2 · (♯‘(iEdg‘𝐺)))
125124a1i 11 . . . . 5 (𝐺 ∈ UPGraph → (2 · (♯‘𝐼)) = (2 · (♯‘(iEdg‘𝐺))))
126122, 125eqeq12d 2839 . . . 4 (𝐺 ∈ UPGraph → (Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)) ↔ Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺)))))
127115, 126imbi12d 347 . . 3 (𝐺 ∈ UPGraph → ((𝐼 ∈ Fin → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼))) ↔ ((iEdg‘𝐺) ∈ Fin → Σ𝑣 ∈ (Vtx‘𝐺)(((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))‘𝑣) = (2 · (♯‘(iEdg‘𝐺))))))
128109, 112, 1273imtr4d 296 . 2 (𝐺 ∈ UPGraph → (𝑉 ∈ Fin → (𝐼 ∈ Fin → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)))))
1291283imp 1107 1 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑣𝑉 (𝐷𝑣) = (2 · (♯‘𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wnel 3125  {crab 3144  Vcvv 3496  cdif 3935  c0 4293  {csn 4569  cop 4575  dom cdm 5557  cres 5559  cfv 6357  (class class class)co 7158  Fincfn 8511  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  2c2 11695  0cn0 11900  chash 13693  Σcsu 15044  Vtxcvtx 26783  iEdgciedg 26784  UHGraphcuhgr 26843  UPGraphcupgr 26867  VtxDegcvtxdg 27249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-xadd 12511  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-vtx 26785  df-iedg 26786  df-edg 26835  df-uhgr 26845  df-upgr 26869  df-vtxdg 27250
This theorem is referenced by:  fusgr1th  27335  finsumvtxdgeven  27336
  Copyright terms: Public domain W3C validator