MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fint Structured version   Visualization version   GIF version

Theorem fint 5979
Description: Function into an intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Hypothesis
Ref Expression
fint.1 𝐵 ≠ ∅
Assertion
Ref Expression
fint (𝐹:𝐴 𝐵 ↔ ∀𝑥𝐵 𝐹:𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fint
StepHypRef Expression
1 ssint 4419 . . . 4 (ran 𝐹 𝐵 ↔ ∀𝑥𝐵 ran 𝐹𝑥)
21anbi2i 725 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐵 ran 𝐹𝑥))
3 fint.1 . . . 4 𝐵 ≠ ∅
4 r19.28zv 4014 . . . 4 (𝐵 ≠ ∅ → (∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐵 ran 𝐹𝑥)))
53, 4ax-mp 5 . . 3 (∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐵 ran 𝐹𝑥))
62, 5bitr4i 265 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹 𝐵) ↔ ∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥))
7 df-f 5791 . 2 (𝐹:𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 𝐵))
8 df-f 5791 . . 3 (𝐹:𝐴𝑥 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥))
98ralbii 2959 . 2 (∀𝑥𝐵 𝐹:𝐴𝑥 ↔ ∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥))
106, 7, 93bitr4i 290 1 (𝐹:𝐴 𝐵 ↔ ∀𝑥𝐵 𝐹:𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382  wne 2776  wral 2892  wss 3536  c0 3870   cint 4401  ran crn 5026   Fn wfn 5782  wf 5783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-ral 2897  df-v 3171  df-dif 3539  df-in 3543  df-ss 3550  df-nul 3871  df-int 4402  df-f 5791
This theorem is referenced by:  chintcli  27377
  Copyright terms: Public domain W3C validator