![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > finxpreclem1 | Structured version Visualization version GIF version |
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 17-Oct-2020.) |
Ref | Expression |
---|---|
finxpreclem1 | ⊢ (𝑋 ∈ 𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1𝑜, 𝑋〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 6812 | . 2 ⊢ (1𝑜(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))𝑋) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1𝑜, 𝑋〉) | |
2 | eqidd 2757 | . . 3 ⊢ (𝑋 ∈ 𝑈 → (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))) | |
3 | eleq1a 2830 | . . . . . 6 ⊢ (𝑋 ∈ 𝑈 → (𝑥 = 𝑋 → 𝑥 ∈ 𝑈)) | |
4 | 3 | anim2d 590 | . . . . 5 ⊢ (𝑋 ∈ 𝑈 → ((𝑛 = 1𝑜 ∧ 𝑥 = 𝑋) → (𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈))) |
5 | iftrue 4232 | . . . . 5 ⊢ ((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈) → if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)) = ∅) | |
6 | 4, 5 | syl6 35 | . . . 4 ⊢ (𝑋 ∈ 𝑈 → ((𝑛 = 1𝑜 ∧ 𝑥 = 𝑋) → if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)) = ∅)) |
7 | 6 | imp 444 | . . 3 ⊢ ((𝑋 ∈ 𝑈 ∧ (𝑛 = 1𝑜 ∧ 𝑥 = 𝑋)) → if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)) = ∅) |
8 | 1onn 7884 | . . . 4 ⊢ 1𝑜 ∈ ω | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → 1𝑜 ∈ ω) |
10 | elex 3348 | . . 3 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ V) | |
11 | 0ex 4938 | . . . 4 ⊢ ∅ ∈ V | |
12 | 11 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → ∅ ∈ V) |
13 | 2, 7, 9, 10, 12 | ovmpt2d 6949 | . 2 ⊢ (𝑋 ∈ 𝑈 → (1𝑜(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))𝑋) = ∅) |
14 | 1, 13 | syl5reqr 2805 | 1 ⊢ (𝑋 ∈ 𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1𝑜, 𝑋〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1628 ∈ wcel 2135 Vcvv 3336 ∅c0 4054 ifcif 4226 〈cop 4323 ∪ cuni 4584 × cxp 5260 ‘cfv 6045 (class class class)co 6809 ↦ cmpt2 6811 ωcom 7226 1st c1st 7327 1𝑜c1o 7718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pr 5051 ax-un 7110 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-sbc 3573 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-br 4801 df-opab 4861 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fv 6053 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-1o 7725 |
This theorem is referenced by: finxp1o 33536 |
Copyright terms: Public domain | W3C validator |