Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem3 Structured version   Visualization version   GIF version

Theorem finxpreclem3 34678
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 20-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem3.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑋)⟩ = (𝐹‘⟨𝑁, 𝑋⟩))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥   𝑛,𝑋,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem finxpreclem3
StepHypRef Expression
1 df-ov 7162 . 2 (𝑁𝐹𝑋) = (𝐹‘⟨𝑁, 𝑋⟩)
2 finxpreclem3.1 . . . 4 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
32a1i 11 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))))
4 eqeq1 2828 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 = 1o𝑁 = 1o))
5 eleq1 2903 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑈𝑋𝑈))
64, 5bi2anan9 637 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → ((𝑛 = 1o𝑥𝑈) ↔ (𝑁 = 1o𝑋𝑈)))
7 eleq1 2903 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 ∈ (V × 𝑈) ↔ 𝑋 ∈ (V × 𝑈)))
87adantl 484 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑥 ∈ (V × 𝑈) ↔ 𝑋 ∈ (V × 𝑈)))
9 unieq 4852 . . . . . . . . 9 (𝑛 = 𝑁 𝑛 = 𝑁)
109adantr 483 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑛 = 𝑁)
11 fveq2 6673 . . . . . . . . 9 (𝑥 = 𝑋 → (1st𝑥) = (1st𝑋))
1211adantl 484 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → (1st𝑥) = (1st𝑋))
1310, 12opeq12d 4814 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → ⟨ 𝑛, (1st𝑥)⟩ = ⟨ 𝑁, (1st𝑋)⟩)
14 opeq12 4808 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → ⟨𝑛, 𝑥⟩ = ⟨𝑁, 𝑋⟩)
158, 13, 14ifbieq12d 4497 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩))
166, 15ifbieq2d 4495 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if((𝑁 = 1o𝑋𝑈), ∅, if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩)))
17 sssucid 6271 . . . . . . . . . . . . 13 1o ⊆ suc 1o
18 df-2o 8106 . . . . . . . . . . . . 13 2o = suc 1o
1917, 18sseqtrri 4007 . . . . . . . . . . . 12 1o ⊆ 2o
20 1on 8112 . . . . . . . . . . . . . 14 1o ∈ On
2118, 20sucneqoni 34651 . . . . . . . . . . . . 13 2o ≠ 1o
2221necomi 3073 . . . . . . . . . . . 12 1o ≠ 2o
23 df-pss 3957 . . . . . . . . . . . 12 (1o ⊊ 2o ↔ (1o ⊆ 2o ∧ 1o ≠ 2o))
2419, 22, 23mpbir2an 709 . . . . . . . . . . 11 1o ⊊ 2o
25 ssnpss 4083 . . . . . . . . . . 11 (2o ⊆ 1o → ¬ 1o ⊊ 2o)
2624, 25mt2 202 . . . . . . . . . 10 ¬ 2o ⊆ 1o
27 sseq2 3996 . . . . . . . . . 10 (𝑁 = 1o → (2o𝑁 ↔ 2o ⊆ 1o))
2826, 27mtbiri 329 . . . . . . . . 9 (𝑁 = 1o → ¬ 2o𝑁)
2928con2i 141 . . . . . . . 8 (2o𝑁 → ¬ 𝑁 = 1o)
3029intnanrd 492 . . . . . . 7 (2o𝑁 → ¬ (𝑁 = 1o𝑋𝑈))
3130iffalsed 4481 . . . . . 6 (2o𝑁 → if((𝑁 = 1o𝑋𝑈), ∅, if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩)) = if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩))
32 iftrue 4476 . . . . . 6 (𝑋 ∈ (V × 𝑈) → if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩) = ⟨ 𝑁, (1st𝑋)⟩)
3331, 32sylan9eq 2879 . . . . 5 ((2o𝑁𝑋 ∈ (V × 𝑈)) → if((𝑁 = 1o𝑋𝑈), ∅, if(𝑋 ∈ (V × 𝑈), ⟨ 𝑁, (1st𝑋)⟩, ⟨𝑁, 𝑋⟩)) = ⟨ 𝑁, (1st𝑋)⟩)
3416, 33sylan9eqr 2881 . . . 4 (((2o𝑁𝑋 ∈ (V × 𝑈)) ∧ (𝑛 = 𝑁𝑥 = 𝑋)) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ⟨ 𝑁, (1st𝑋)⟩)
3534adantlll 716 . . 3 ((((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) ∧ (𝑛 = 𝑁𝑥 = 𝑋)) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ⟨ 𝑁, (1st𝑋)⟩)
36 simpll 765 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 𝑁 ∈ ω)
37 elex 3515 . . . 4 (𝑋 ∈ (V × 𝑈) → 𝑋 ∈ V)
3837adantl 484 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → 𝑋 ∈ V)
39 opex 5359 . . . 4 𝑁, (1st𝑋)⟩ ∈ V
4039a1i 11 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑋)⟩ ∈ V)
413, 35, 36, 38, 40ovmpod 7305 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → (𝑁𝐹𝑋) = ⟨ 𝑁, (1st𝑋)⟩)
421, 41syl5reqr 2874 1 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑋 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑋)⟩ = (𝐹‘⟨𝑁, 𝑋⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  Vcvv 3497  wss 3939  wpss 3940  c0 4294  ifcif 4470  cop 4576   cuni 4841   × cxp 5556  suc csuc 6196  cfv 6358  (class class class)co 7159  cmpo 7161  ωcom 7583  1st c1st 7690  1oc1o 8098  2oc2o 8099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-ord 6197  df-on 6198  df-suc 6200  df-iota 6317  df-fun 6360  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1o 8105  df-2o 8106
This theorem is referenced by:  finxpreclem4  34679
  Copyright terms: Public domain W3C validator