Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem6 Structured version   Visualization version   GIF version

Theorem finxpreclem6 34671
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 24-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem5.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem6 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈))
Distinct variable groups:   𝑥,𝑛,𝑁   𝑈,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem finxpreclem6
Dummy variables 𝑚 𝑜 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2900 . . . . 5 (𝑛 = 𝑁 → (𝑛 ∈ ω ↔ 𝑁 ∈ ω))
2 eleq2 2901 . . . . 5 (𝑛 = 𝑁 → (1o𝑛 ↔ 1o𝑁))
31, 2anbi12d 632 . . . 4 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ 1o𝑛) ↔ (𝑁 ∈ ω ∧ 1o𝑁)))
4 anass 471 . . . . . . . . 9 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑦 ∈ (V × 𝑈)) ↔ (𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))))
5 nfv 1911 . . . . . . . . . . . . . . 15 𝑥(𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))
6 finxpreclem5.1 . . . . . . . . . . . . . . . . . . . 20 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
7 nfmpo2 7229 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
86, 7nfcxfr 2975 . . . . . . . . . . . . . . . . . . 19 𝑥𝐹
9 nfcv 2977 . . . . . . . . . . . . . . . . . . 19 𝑥𝑛, 𝑦
108, 9nfrdg 8044 . . . . . . . . . . . . . . . . . 18 𝑥rec(𝐹, ⟨𝑛, 𝑦⟩)
11 nfcv 2977 . . . . . . . . . . . . . . . . . 18 𝑥𝑛
1210, 11nffv 6674 . . . . . . . . . . . . . . . . 17 𝑥(rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)
1312nfeq2 2995 . . . . . . . . . . . . . . . 16 𝑥∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)
1413nfn 1853 . . . . . . . . . . . . . . 15 𝑥 ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)
155, 14nfim 1893 . . . . . . . . . . . . . 14 𝑥((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))
16 eleq1 2900 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥 ∈ (V × 𝑈) ↔ 𝑦 ∈ (V × 𝑈)))
1716notbid 320 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (V × 𝑈) ↔ ¬ 𝑦 ∈ (V × 𝑈)))
1817anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈)) ↔ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))))
1918anbi2d 630 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) ↔ (𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))))
20 opeq2 4797 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → ⟨𝑛, 𝑥⟩ = ⟨𝑛, 𝑦⟩)
21 rdgeq2 8042 . . . . . . . . . . . . . . . . . . 19 (⟨𝑛, 𝑥⟩ = ⟨𝑛, 𝑦⟩ → rec(𝐹, ⟨𝑛, 𝑥⟩) = rec(𝐹, ⟨𝑛, 𝑦⟩))
2220, 21syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → rec(𝐹, ⟨𝑛, 𝑥⟩) = rec(𝐹, ⟨𝑛, 𝑦⟩))
2322fveq1d 6666 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))
2423eqeq2d 2832 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) ↔ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
2524notbid 320 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) ↔ ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
2619, 25imbi12d 347 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛)) ↔ ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))))
27 anass 471 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) ↔ (𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))))
28 vex 3497 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ V
29 fveqeq2 6673 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = ∅ → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘∅) = ⟨𝑛, 𝑥⟩))
30 fveqeq2 6673 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑜 → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩))
31 fveqeq2 6673 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = suc 𝑜 → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩))
32 opex 5348 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛, 𝑥⟩ ∈ V
3332rdg0 8051 . . . . . . . . . . . . . . . . . . . . . . . 24 (rec(𝐹, ⟨𝑛, 𝑥⟩)‘∅) = ⟨𝑛, 𝑥
3433a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘∅) = ⟨𝑛, 𝑥⟩)
35 nnon 7580 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑜 ∈ ω → 𝑜 ∈ On)
36 rdgsuc 8054 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑜 ∈ On → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = (𝐹‘(rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜)))
3735, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑜 ∈ ω → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = (𝐹‘(rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜)))
38 fveq2 6664 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩ → (𝐹‘(rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜)) = (𝐹‘⟨𝑛, 𝑥⟩))
3937, 38sylan9eq 2876 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑜 ∈ ω ∧ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = (𝐹‘⟨𝑛, 𝑥⟩))
406finxpreclem5 34670 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ 1o𝑛) → (¬ 𝑥 ∈ (V × 𝑈) → (𝐹‘⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩))
4140imp 409 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (𝐹‘⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩)
4239, 41sylan9eq 2876 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑜 ∈ ω ∧ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩) ∧ ((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩)
4342expl 460 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑜 ∈ ω → (((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩ ∧ ((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩))
4443expcomd 419 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑜 ∈ ω → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩ → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩)))
4529, 30, 31, 34, 44finds2 7604 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ω → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩))
46 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (𝑛 ∈ ω ↔ 𝑚 ∈ ω))
47 fveqeq2 6673 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩))
4847imbi2d 343 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → ((((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩) ↔ (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩)))
4946, 48imbi12d 347 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → ((𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)) ↔ (𝑚 ∈ ω → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩))))
5045, 49mpbiri 260 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)))
5150equcoms 2023 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)))
5228, 51vtocle 3583 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩))
5327, 52syl5bir 245 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ω → ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩))
5453anabsi5 667 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)
55 vex 3497 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
5628, 55opnzi 5358 . . . . . . . . . . . . . . . . . 18 𝑛, 𝑥⟩ ≠ ∅
5756a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ⟨𝑛, 𝑥⟩ ≠ ∅)
5854, 57eqnetrd 3083 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) ≠ ∅)
5958necomd 3071 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ∅ ≠ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛))
6059neneqd 3021 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛))
6115, 26, 60chvarfv 2238 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))
6261intnand 491 . . . . . . . . . . . 12 ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
6362adantl 484 . . . . . . . . . . 11 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) → ¬ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
64 abid 2803 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} ↔ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
65 opeq1 4796 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑁 → ⟨𝑛, 𝑦⟩ = ⟨𝑁, 𝑦⟩)
66 rdgeq2 8042 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑛, 𝑦⟩ = ⟨𝑁, 𝑦⟩ → rec(𝐹, ⟨𝑛, 𝑦⟩) = rec(𝐹, ⟨𝑁, 𝑦⟩))
6765, 66syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑁 → rec(𝐹, ⟨𝑛, 𝑦⟩) = rec(𝐹, ⟨𝑁, 𝑦⟩))
68 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑁𝑛 = 𝑁)
6967, 68fveq12d 6671 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑁 → (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
7069eqeq2d 2832 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑁 → (∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛) ↔ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁)))
711, 70anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))))
7271abbidv 2885 . . . . . . . . . . . . . . 15 (𝑛 = 𝑁 → {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))})
736dffinxpf 34660 . . . . . . . . . . . . . . 15 (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))}
7472, 73syl6eqr 2874 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} = (𝑈↑↑𝑁))
7574eleq2d 2898 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝑦 ∈ {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} ↔ 𝑦 ∈ (𝑈↑↑𝑁)))
7664, 75syl5rbbr 288 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑦 ∈ (𝑈↑↑𝑁) ↔ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))))
7776adantr 483 . . . . . . . . . . 11 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) → (𝑦 ∈ (𝑈↑↑𝑁) ↔ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))))
7863, 77mtbird 327 . . . . . . . . . 10 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) → ¬ 𝑦 ∈ (𝑈↑↑𝑁))
7978ex 415 . . . . . . . . 9 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ 𝑦 ∈ (𝑈↑↑𝑁)))
804, 79syl5bi 244 . . . . . . . 8 (𝑛 = 𝑁 → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑦 ∈ (V × 𝑈)) → ¬ 𝑦 ∈ (𝑈↑↑𝑁)))
8180expdimp 455 . . . . . . 7 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ 1o𝑛)) → (¬ 𝑦 ∈ (V × 𝑈) → ¬ 𝑦 ∈ (𝑈↑↑𝑁)))
8281con4d 115 . . . . . 6 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ 1o𝑛)) → (𝑦 ∈ (𝑈↑↑𝑁) → 𝑦 ∈ (V × 𝑈)))
8382ssrdv 3972 . . . . 5 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ 1o𝑛)) → (𝑈↑↑𝑁) ⊆ (V × 𝑈))
8483ex 415 . . . 4 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ 1o𝑛) → (𝑈↑↑𝑁) ⊆ (V × 𝑈)))
853, 84sylbird 262 . . 3 (𝑛 = 𝑁 → ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈)))
8685vtocleg 3580 . 2 (𝑁 ∈ ω → ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈)))
8786anabsi5 667 1 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {cab 2799  wne 3016  Vcvv 3494  wss 3935  c0 4290  ifcif 4466  cop 4566   cuni 4831   × cxp 5547  Oncon0 6185  suc csuc 6187  cfv 6349  cmpo 7152  ωcom 7574  1st c1st 7681  reccrdg 8039  1oc1o 8089  ↑↑cfinxp 34658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-finxp 34659
This theorem is referenced by:  finxpsuclem  34672
  Copyright terms: Public domain W3C validator