Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fipjust Structured version   Visualization version   GIF version

Theorem fipjust 36782
Description: A definition of the finite intersection property of a class based on closure under pair-wise intersection of its elements is independent of the dummy variables. (Contributed by Richard Penner, 1-Jan-2020.)
Assertion
Ref Expression
fipjust (∀𝑢𝐴𝑣𝐴 (𝑢𝑣) ∈ 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
Distinct variable group:   𝑣,𝑢,𝑥,𝑦,𝐴

Proof of Theorem fipjust
StepHypRef Expression
1 ineq1 3672 . . 3 (𝑢 = 𝑥 → (𝑢𝑣) = (𝑥𝑣))
21eleq1d 2576 . 2 (𝑢 = 𝑥 → ((𝑢𝑣) ∈ 𝐴 ↔ (𝑥𝑣) ∈ 𝐴))
3 ineq2 3673 . . 3 (𝑣 = 𝑦 → (𝑥𝑣) = (𝑥𝑦))
43eleq1d 2576 . 2 (𝑣 = 𝑦 → ((𝑥𝑣) ∈ 𝐴 ↔ (𝑥𝑦) ∈ 𝐴))
52, 4cbvral2v 3059 1 (∀𝑢𝐴𝑣𝐴 (𝑢𝑣) ∈ 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 194  wcel 1938  wral 2800  cin 3443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ral 2805  df-v 3079  df-in 3451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator