MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fipwuni Structured version   Visualization version   GIF version

Theorem fipwuni 8893
Description: The set of finite intersections of a set is contained in the powerset of the union of the elements of 𝐴. (Contributed by Mario Carneiro, 24-Nov-2013.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
fipwuni (fi‘𝐴) ⊆ 𝒫 𝐴

Proof of Theorem fipwuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniexg 7469 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ V)
21pwexd 5283 . . . 4 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
3 pwuni 4878 . . . 4 𝐴 ⊆ 𝒫 𝐴
4 fiss 8891 . . . 4 ((𝒫 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝐴) → (fi‘𝐴) ⊆ (fi‘𝒫 𝐴))
52, 3, 4sylancl 588 . . 3 (𝐴 ∈ V → (fi‘𝐴) ⊆ (fi‘𝒫 𝐴))
6 ssinss1 4217 . . . . . . 7 (𝑥 𝐴 → (𝑥𝑦) ⊆ 𝐴)
7 vex 3500 . . . . . . . 8 𝑥 ∈ V
87elpw 4546 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥 𝐴)
97inex1 5224 . . . . . . . 8 (𝑥𝑦) ∈ V
109elpw 4546 . . . . . . 7 ((𝑥𝑦) ∈ 𝒫 𝐴 ↔ (𝑥𝑦) ⊆ 𝐴)
116, 8, 103imtr4i 294 . . . . . 6 (𝑥 ∈ 𝒫 𝐴 → (𝑥𝑦) ∈ 𝒫 𝐴)
1211adantr 483 . . . . 5 ((𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴) → (𝑥𝑦) ∈ 𝒫 𝐴)
1312rgen2 3206 . . . 4 𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴
14 inficl 8892 . . . . 5 (𝒫 𝐴 ∈ V → (∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴 ↔ (fi‘𝒫 𝐴) = 𝒫 𝐴))
152, 14syl 17 . . . 4 (𝐴 ∈ V → (∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴(𝑥𝑦) ∈ 𝒫 𝐴 ↔ (fi‘𝒫 𝐴) = 𝒫 𝐴))
1613, 15mpbii 235 . . 3 (𝐴 ∈ V → (fi‘𝒫 𝐴) = 𝒫 𝐴)
175, 16sseqtrd 4010 . 2 (𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 𝐴)
18 fvprc 6666 . . 3 𝐴 ∈ V → (fi‘𝐴) = ∅)
19 0ss 4353 . . 3 ∅ ⊆ 𝒫 𝐴
2018, 19eqsstrdi 4024 . 2 𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 𝐴)
2117, 20pm2.61i 184 1 (fi‘𝐴) ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497  cin 3938  wss 3939  c0 4294  𝒫 cpw 4542   cuni 4841  cfv 6358  ficfi 8877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-fin 8516  df-fi 8878
This theorem is referenced by:  fiuni  8895  ordtbas  21803
  Copyright terms: Public domain W3C validator