MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fissuni Structured version   Visualization version   GIF version

Theorem fissuni 8831
Description: A finite subset of a union is covered by finitely many elements. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
fissuni ((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐

Proof of Theorem fissuni
Dummy variables 𝑓 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . 3 ((𝐴 𝐵𝐴 ∈ Fin) → 𝐴 ∈ Fin)
2 dfss3 3958 . . . . 5 (𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
3 eluni2 4844 . . . . . 6 (𝑥 𝐵 ↔ ∃𝑧𝐵 𝑥𝑧)
43ralbii 3167 . . . . 5 (∀𝑥𝐴 𝑥 𝐵 ↔ ∀𝑥𝐴𝑧𝐵 𝑥𝑧)
52, 4sylbb 221 . . . 4 (𝐴 𝐵 → ∀𝑥𝐴𝑧𝐵 𝑥𝑧)
65adantr 483 . . 3 ((𝐴 𝐵𝐴 ∈ Fin) → ∀𝑥𝐴𝑧𝐵 𝑥𝑧)
7 eleq2 2903 . . . 4 (𝑧 = (𝑓𝑥) → (𝑥𝑧𝑥 ∈ (𝑓𝑥)))
87ac6sfi 8764 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑧𝐵 𝑥𝑧) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)))
91, 6, 8syl2anc 586 . 2 ((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)))
10 fimass 6557 . . . . . 6 (𝑓:𝐴𝐵 → (𝑓𝐴) ⊆ 𝐵)
11 vex 3499 . . . . . . . 8 𝑓 ∈ V
1211imaex 7623 . . . . . . 7 (𝑓𝐴) ∈ V
1312elpw 4545 . . . . . 6 ((𝑓𝐴) ∈ 𝒫 𝐵 ↔ (𝑓𝐴) ⊆ 𝐵)
1410, 13sylibr 236 . . . . 5 (𝑓:𝐴𝐵 → (𝑓𝐴) ∈ 𝒫 𝐵)
1514ad2antrl 726 . . . 4 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → (𝑓𝐴) ∈ 𝒫 𝐵)
16 ffun 6519 . . . . . 6 (𝑓:𝐴𝐵 → Fun 𝑓)
1716ad2antrl 726 . . . . 5 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → Fun 𝑓)
18 simplr 767 . . . . 5 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → 𝐴 ∈ Fin)
19 imafi 8819 . . . . 5 ((Fun 𝑓𝐴 ∈ Fin) → (𝑓𝐴) ∈ Fin)
2017, 18, 19syl2anc 586 . . . 4 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → (𝑓𝐴) ∈ Fin)
2115, 20elind 4173 . . 3 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → (𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin))
22 ffn 6516 . . . . . . . . . . 11 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
2322adantr 483 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → 𝑓 Fn 𝐴)
24 ssidd 3992 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → 𝐴𝐴)
25 simpr 487 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → 𝑥𝐴)
26 fnfvima 6997 . . . . . . . . . 10 ((𝑓 Fn 𝐴𝐴𝐴𝑥𝐴) → (𝑓𝑥) ∈ (𝑓𝐴))
2723, 24, 25, 26syl3anc 1367 . . . . . . . . 9 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ (𝑓𝐴))
28 elssuni 4870 . . . . . . . . 9 ((𝑓𝑥) ∈ (𝑓𝐴) → (𝑓𝑥) ⊆ (𝑓𝐴))
2927, 28syl 17 . . . . . . . 8 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ⊆ (𝑓𝐴))
3029sseld 3968 . . . . . . 7 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑥 ∈ (𝑓𝑥) → 𝑥 (𝑓𝐴)))
3130ralimdva 3179 . . . . . 6 (𝑓:𝐴𝐵 → (∀𝑥𝐴 𝑥 ∈ (𝑓𝑥) → ∀𝑥𝐴 𝑥 (𝑓𝐴)))
3231imp 409 . . . . 5 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)) → ∀𝑥𝐴 𝑥 (𝑓𝐴))
33 dfss3 3958 . . . . 5 (𝐴 (𝑓𝐴) ↔ ∀𝑥𝐴 𝑥 (𝑓𝐴))
3432, 33sylibr 236 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)) → 𝐴 (𝑓𝐴))
3534adantl 484 . . 3 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → 𝐴 (𝑓𝐴))
36 unieq 4851 . . . . 5 (𝑐 = (𝑓𝐴) → 𝑐 = (𝑓𝐴))
3736sseq2d 4001 . . . 4 (𝑐 = (𝑓𝐴) → (𝐴 𝑐𝐴 (𝑓𝐴)))
3837rspcev 3625 . . 3 (((𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 (𝑓𝐴)) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
3921, 35, 38syl2anc 586 . 2 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
409, 39exlimddv 1936 1 ((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  wral 3140  wrex 3141  cin 3937  wss 3938  𝒫 cpw 4541   cuni 4840  cima 5560  Fun wfun 6351   Fn wfn 6352  wf 6353  cfv 6357  Fincfn 8511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-fin 8515
This theorem is referenced by:  isacs3lem  17778  isnacs3  39314
  Copyright terms: Public domain W3C validator