Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fissuni Structured version   Visualization version   GIF version

Theorem fissuni 8223
 Description: A finite subset of a union is covered by finitely many elements. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
fissuni ((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐

Proof of Theorem fissuni
Dummy variables 𝑓 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3 ((𝐴 𝐵𝐴 ∈ Fin) → 𝐴 ∈ Fin)
2 dfss3 3577 . . . . 5 (𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
3 eluni2 4411 . . . . . 6 (𝑥 𝐵 ↔ ∃𝑧𝐵 𝑥𝑧)
43ralbii 2975 . . . . 5 (∀𝑥𝐴 𝑥 𝐵 ↔ ∀𝑥𝐴𝑧𝐵 𝑥𝑧)
52, 4sylbb 209 . . . 4 (𝐴 𝐵 → ∀𝑥𝐴𝑧𝐵 𝑥𝑧)
65adantr 481 . . 3 ((𝐴 𝐵𝐴 ∈ Fin) → ∀𝑥𝐴𝑧𝐵 𝑥𝑧)
7 eleq2 2687 . . . 4 (𝑧 = (𝑓𝑥) → (𝑥𝑧𝑥 ∈ (𝑓𝑥)))
87ac6sfi 8156 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑧𝐵 𝑥𝑧) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)))
91, 6, 8syl2anc 692 . 2 ((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)))
10 fimass 6043 . . . . . 6 (𝑓:𝐴𝐵 → (𝑓𝐴) ⊆ 𝐵)
11 vex 3192 . . . . . . . 8 𝑓 ∈ V
1211imaex 7058 . . . . . . 7 (𝑓𝐴) ∈ V
1312elpw 4141 . . . . . 6 ((𝑓𝐴) ∈ 𝒫 𝐵 ↔ (𝑓𝐴) ⊆ 𝐵)
1410, 13sylibr 224 . . . . 5 (𝑓:𝐴𝐵 → (𝑓𝐴) ∈ 𝒫 𝐵)
1514ad2antrl 763 . . . 4 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → (𝑓𝐴) ∈ 𝒫 𝐵)
16 ffun 6010 . . . . . 6 (𝑓:𝐴𝐵 → Fun 𝑓)
1716ad2antrl 763 . . . . 5 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → Fun 𝑓)
18 simplr 791 . . . . 5 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → 𝐴 ∈ Fin)
19 imafi 8211 . . . . 5 ((Fun 𝑓𝐴 ∈ Fin) → (𝑓𝐴) ∈ Fin)
2017, 18, 19syl2anc 692 . . . 4 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → (𝑓𝐴) ∈ Fin)
2115, 20elind 3781 . . 3 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → (𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin))
22 ffn 6007 . . . . . . . . . . 11 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
2322adantr 481 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → 𝑓 Fn 𝐴)
24 ssid 3608 . . . . . . . . . . 11 𝐴𝐴
2524a1i 11 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → 𝐴𝐴)
26 simpr 477 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥𝐴) → 𝑥𝐴)
27 fnfvima 6456 . . . . . . . . . 10 ((𝑓 Fn 𝐴𝐴𝐴𝑥𝐴) → (𝑓𝑥) ∈ (𝑓𝐴))
2823, 25, 26, 27syl3anc 1323 . . . . . . . . 9 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ (𝑓𝐴))
29 elssuni 4438 . . . . . . . . 9 ((𝑓𝑥) ∈ (𝑓𝐴) → (𝑓𝑥) ⊆ (𝑓𝐴))
3028, 29syl 17 . . . . . . . 8 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ⊆ (𝑓𝐴))
3130sseld 3586 . . . . . . 7 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑥 ∈ (𝑓𝑥) → 𝑥 (𝑓𝐴)))
3231ralimdva 2957 . . . . . 6 (𝑓:𝐴𝐵 → (∀𝑥𝐴 𝑥 ∈ (𝑓𝑥) → ∀𝑥𝐴 𝑥 (𝑓𝐴)))
3332imp 445 . . . . 5 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)) → ∀𝑥𝐴 𝑥 (𝑓𝐴))
34 dfss3 3577 . . . . 5 (𝐴 (𝑓𝐴) ↔ ∀𝑥𝐴 𝑥 (𝑓𝐴))
3533, 34sylibr 224 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥)) → 𝐴 (𝑓𝐴))
3635adantl 482 . . 3 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → 𝐴 (𝑓𝐴))
37 unieq 4415 . . . . 5 (𝑐 = (𝑓𝐴) → 𝑐 = (𝑓𝐴))
3837sseq2d 3617 . . . 4 (𝑐 = (𝑓𝐴) → (𝐴 𝑐𝐴 (𝑓𝐴)))
3938rspcev 3298 . . 3 (((𝑓𝐴) ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 (𝑓𝐴)) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
4021, 36, 39syl2anc 692 . 2 (((𝐴 𝐵𝐴 ∈ Fin) ∧ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝑥 ∈ (𝑓𝑥))) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
419, 40exlimddv 1860 1 ((𝐴 𝐵𝐴 ∈ Fin) → ∃𝑐 ∈ (𝒫 𝐵 ∩ Fin)𝐴 𝑐)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480  ∃wex 1701   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908   ∩ cin 3558   ⊆ wss 3559  𝒫 cpw 4135  ∪ cuni 4407   “ cima 5082  Fun wfun 5846   Fn wfn 5847  ⟶wf 5848  ‘cfv 5852  Fincfn 7907 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-om 7020  df-1o 7512  df-er 7694  df-en 7908  df-dom 7909  df-fin 7911 This theorem is referenced by:  isacs3lem  17098  isnacs3  36788
 Copyright terms: Public domain W3C validator