MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiuni Structured version   Visualization version   GIF version

Theorem fiuni 8286
Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiuni (𝐴𝑉 𝐴 = (fi‘𝐴))

Proof of Theorem fiuni
StepHypRef Expression
1 ssfii 8277 . . 3 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
21unissd 4433 . 2 (𝐴𝑉 𝐴 (fi‘𝐴))
3 fipwuni 8284 . . . . 5 (fi‘𝐴) ⊆ 𝒫 𝐴
43unissi 4432 . . . 4 (fi‘𝐴) ⊆ 𝒫 𝐴
5 unipw 4884 . . . 4 𝒫 𝐴 = 𝐴
64, 5sseqtri 3621 . . 3 (fi‘𝐴) ⊆ 𝐴
76a1i 11 . 2 (𝐴𝑉 (fi‘𝐴) ⊆ 𝐴)
82, 7eqssd 3604 1 (𝐴𝑉 𝐴 = (fi‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  wss 3559  𝒫 cpw 4135   cuni 4407  cfv 5852  ficfi 8268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-fin 7911  df-fi 8269
This theorem is referenced by:  fipwss  8287  ordttopon  20920  ptbasfi  21307  xkouni  21325  alexsublem  21771  alexsub  21772  alexsubb  21773  alexsubALTlem3  21776  alexsubALTlem4  21777  ptcmplem1  21779  topjoin  32037
  Copyright terms: Public domain W3C validator