![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fixcnv | Structured version Visualization version GIF version |
Description: The fixpoints of a class are the same as those of its converse. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
fixcnv | ⊢ Fix 𝐴 = Fix ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3341 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1, 1 | brcnv 5458 | . . 3 ⊢ (𝑥◡𝐴𝑥 ↔ 𝑥𝐴𝑥) |
3 | 1 | elfix 32314 | . . 3 ⊢ (𝑥 ∈ Fix ◡𝐴 ↔ 𝑥◡𝐴𝑥) |
4 | 1 | elfix 32314 | . . 3 ⊢ (𝑥 ∈ Fix 𝐴 ↔ 𝑥𝐴𝑥) |
5 | 2, 3, 4 | 3bitr4ri 293 | . 2 ⊢ (𝑥 ∈ Fix 𝐴 ↔ 𝑥 ∈ Fix ◡𝐴) |
6 | 5 | eqriv 2755 | 1 ⊢ Fix 𝐴 = Fix ◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 ∈ wcel 2137 class class class wbr 4802 ◡ccnv 5263 Fix cfix 32246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pr 5053 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-op 4326 df-br 4803 df-opab 4863 df-id 5172 df-xp 5270 df-rel 5271 df-cnv 5272 df-dm 5274 df-fix 32270 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |