MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fixufil Structured version   Visualization version   GIF version

Theorem fixufil 22524
Description: The condition describing a fixed ultrafilter always produces an ultrafilter. (Contributed by Jeff Hankins, 9-Dec-2009.) (Revised by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 29-Jul-2015.)
Assertion
Ref Expression
fixufil ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (UFil‘𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝑥,𝑉

Proof of Theorem fixufil
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uffix 22523 . . . 4 ((𝑋𝑉𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
21simprd 498 . . 3 ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}}))
31simpld 497 . . . 4 ((𝑋𝑉𝐴𝑋) → {{𝐴}} ∈ (fBas‘𝑋))
4 fgcl 22480 . . . 4 ({{𝐴}} ∈ (fBas‘𝑋) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋))
53, 4syl 17 . . 3 ((𝑋𝑉𝐴𝑋) → (𝑋filGen{{𝐴}}) ∈ (Fil‘𝑋))
62, 5eqeltrd 2913 . 2 ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (Fil‘𝑋))
7 undif2 4424 . . . . . . . . . 10 (𝑦 ∪ (𝑋𝑦)) = (𝑦𝑋)
8 elpwi 4550 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
9 ssequn1 4155 . . . . . . . . . . 11 (𝑦𝑋 ↔ (𝑦𝑋) = 𝑋)
108, 9sylib 220 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝑋 → (𝑦𝑋) = 𝑋)
117, 10syl5req 2869 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋𝑋 = (𝑦 ∪ (𝑋𝑦)))
1211eleq2d 2898 . . . . . . . 8 (𝑦 ∈ 𝒫 𝑋 → (𝐴𝑋𝐴 ∈ (𝑦 ∪ (𝑋𝑦))))
1312biimpac 481 . . . . . . 7 ((𝐴𝑋𝑦 ∈ 𝒫 𝑋) → 𝐴 ∈ (𝑦 ∪ (𝑋𝑦)))
14 elun 4124 . . . . . . 7 (𝐴 ∈ (𝑦 ∪ (𝑋𝑦)) ↔ (𝐴𝑦𝐴 ∈ (𝑋𝑦)))
1513, 14sylib 220 . . . . . 6 ((𝐴𝑋𝑦 ∈ 𝒫 𝑋) → (𝐴𝑦𝐴 ∈ (𝑋𝑦)))
1615adantll 712 . . . . 5 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝐴𝑦𝐴 ∈ (𝑋𝑦)))
17 ibar 531 . . . . . . 7 (𝑦 ∈ 𝒫 𝑋 → (𝐴𝑦 ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦)))
1817adantl 484 . . . . . 6 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝐴𝑦 ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦)))
19 difss 4107 . . . . . . . . 9 (𝑋𝑦) ⊆ 𝑋
20 elpw2g 5239 . . . . . . . . 9 (𝑋𝑉 → ((𝑋𝑦) ∈ 𝒫 𝑋 ↔ (𝑋𝑦) ⊆ 𝑋))
2119, 20mpbiri 260 . . . . . . . 8 (𝑋𝑉 → (𝑋𝑦) ∈ 𝒫 𝑋)
2221ad2antrr 724 . . . . . . 7 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝑋𝑦) ∈ 𝒫 𝑋)
2322biantrurd 535 . . . . . 6 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → (𝐴 ∈ (𝑋𝑦) ↔ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦))))
2418, 23orbi12d 915 . . . . 5 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → ((𝐴𝑦𝐴 ∈ (𝑋𝑦)) ↔ ((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ∨ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦)))))
2516, 24mpbid 234 . . . 4 (((𝑋𝑉𝐴𝑋) ∧ 𝑦 ∈ 𝒫 𝑋) → ((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ∨ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦))))
2625ralrimiva 3182 . . 3 ((𝑋𝑉𝐴𝑋) → ∀𝑦 ∈ 𝒫 𝑋((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ∨ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦))))
27 eleq2 2901 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
2827elrab 3679 . . . . 5 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ (𝑦 ∈ 𝒫 𝑋𝐴𝑦))
29 eleq2 2901 . . . . . 6 (𝑥 = (𝑋𝑦) → (𝐴𝑥𝐴 ∈ (𝑋𝑦)))
3029elrab 3679 . . . . 5 ((𝑋𝑦) ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ↔ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦)))
3128, 30orbi12i 911 . . . 4 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∨ (𝑋𝑦) ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) ↔ ((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ∨ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦))))
3231ralbii 3165 . . 3 (∀𝑦 ∈ 𝒫 𝑋(𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∨ (𝑋𝑦) ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥}) ↔ ∀𝑦 ∈ 𝒫 𝑋((𝑦 ∈ 𝒫 𝑋𝐴𝑦) ∨ ((𝑋𝑦) ∈ 𝒫 𝑋𝐴 ∈ (𝑋𝑦))))
3326, 32sylibr 236 . 2 ((𝑋𝑉𝐴𝑋) → ∀𝑦 ∈ 𝒫 𝑋(𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∨ (𝑋𝑦) ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
34 isufil 22505 . 2 ({𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (UFil‘𝑋) ↔ ({𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (Fil‘𝑋) ∧ ∀𝑦 ∈ 𝒫 𝑋(𝑦 ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∨ (𝑋𝑦) ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})))
356, 33, 34sylanbrc 585 1 ((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (UFil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wral 3138  {crab 3142  cdif 3932  cun 3933  wss 3935  𝒫 cpw 4538  {csn 4560  cfv 6349  (class class class)co 7150  fBascfbas 20527  filGencfg 20528  Filcfil 22447  UFilcufil 22501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-int 4869  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-fbas 20536  df-fg 20537  df-fil 22448  df-ufil 22503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator