![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flbi | Structured version Visualization version GIF version |
Description: A condition equivalent to floor. (Contributed by NM, 11-Mar-2005.) (Revised by Mario Carneiro, 2-Nov-2013.) |
Ref | Expression |
---|---|
flbi | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flval 12785 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) | |
2 | 1 | eqeq1d 2758 | . . 3 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) = 𝐵 ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
3 | 2 | adantr 472 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
4 | rebtwnz 11976 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | |
5 | breq1 4803 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥 ≤ 𝐴 ↔ 𝐵 ≤ 𝐴)) | |
6 | oveq1 6816 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑥 + 1) = (𝐵 + 1)) | |
7 | 6 | breq2d 4812 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴 < (𝑥 + 1) ↔ 𝐴 < (𝐵 + 1))) |
8 | 5, 7 | anbi12d 749 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)))) |
9 | 8 | riota2 6792 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
10 | 4, 9 | sylan2 492 | . . 3 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
11 | 10 | ancoms 468 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
12 | 3, 11 | bitr4d 271 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1628 ∈ wcel 2135 ∃!wreu 3048 class class class wbr 4800 ‘cfv 6045 ℩crio 6769 (class class class)co 6809 ℝcr 10123 1c1 10125 + caddc 10127 < clt 10262 ≤ cle 10263 ℤcz 11565 ⌊cfl 12781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 ax-pre-sup 10202 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-er 7907 df-en 8118 df-dom 8119 df-sdom 8120 df-sup 8509 df-inf 8510 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-nn 11209 df-n0 11481 df-z 11566 df-uz 11876 df-fl 12783 |
This theorem is referenced by: flbi2 12808 fladdz 12816 btwnzge0 12819 bitsfzolem 15354 bitsfzo 15355 bitsmod 15356 bitscmp 15358 pcfaclem 15800 mbfi1fseqlem4 23680 dvfsumlem1 23984 fsumharmonic 24933 ppiub 25124 chpub 25140 bposlem1 25204 bposlem2 25205 ex-fl 27611 subfacval3 31474 itg2addnclem2 33771 hashnzfz2 39018 oddfl 39984 halffl 40005 fourierdlem65 40887 sqrtpwpw2p 41956 flsqrt 42014 fldivexpfllog2 42865 nnlog2ge0lt1 42866 blen1b 42888 |
Copyright terms: Public domain | W3C validator |